Схемы на подключение асинхронных электродвигателей

Оглавление:

Схема подключения электродвигателя

Нас окружает огромное количество электроприборов, почти две трети из них оборудованы электродвигателями с разными мощностными и электрическими характеристиками. После списания прибора в утиль в большинстве случаев электродвигатели сохраняют работоспособность и могут еще довольно долго послужить в виде самодельных электронасосов, точил, станков, вентиляторов и газонокосилок. Нужно только знать, какая схема подключения электродвигателя использована в данном конкретном приборе, и как правильно выполнить подключение асинхронного или коллекторного электропривода к сети.

Какие конструкции электродвигателя можно подключить своими руками

Из большого количества моделей и конструкций современных электромоторов в домашних условиях для самоделок можно выполнить подключение электродвигателя лишь нескольких схем:

  • Асинхронного трехфазного электродвигателя с обмоткой звездой и треугольником;
  • Асинхронного электродвигателя с однофазным питанием;
  • Коллекторного электромотора со щеточной схемой возбуждения потока.

Для питания бытовых приборов и электродвигателей применяется подключение к однофазной сети с напряжением в 220 В. К такой сети можно подключить и трехфазный двигатель на 380 В. Но даже в таком варианте подключения «выдавить» из электродвигателя боле 2,5-3 кВт мощности без риска сжечь электропроводку практически невозможно. Поэтому в гаражах и столярных мастерских владельцы выполняют проводку трехфазного электропитания, позволяющего использовать мощные двигатели на 5-10 кВт и более.

Что нужно знать для подключения электродвигателя своими руками

Общий принцип работы электродвигателя известен всем еще со школы. Но на практике знания о вращающихся магнитных потоках и ЭДС, индукционных процессах и эквивалентах правильно выполнить даже простейшее подключение однофазного электродвигателя явно не помогут, поэтому для работы будет достаточно:

  • Понимать суть конструкций двигателей;
  • Знать предназначение обмоток и схему подключения;
  • Ориентироваться во вспомогательных устройствах, таких как балластные сопротивления и пусковые конденсаторы.

Советская промышленность выпускала электродвигатели с обязательной металлической табличкой, приклепанной к корпусу, на которой был указан тип и модель, напряжение питания, и даже рисовалась схема подключения. Позже на табличке остались только модель, мощность, потребляемый ток и номер. Сегодня на современном электродвигателе с трудом можно найти маркировку модели, и не более.

Поэтому при выборе схемы подключения необходимо узнать из справочника тип и мощность, прозвонить мультиметром проводку относительно корпуса и между выводами на жгуте. Только после того, как будет достоверно установлено, что нет короткого замыкания на корпусе, определены контакты каждой из обмоток, можно приступать к подключению.

Типовые схемы подключения электродвигателя

Наиболее простым в подключении является коллекторный двигатель со щеточным возбуждением магнитного поля ротора. Коллекторным электродвигателем оснащаются электроинструменты, стиралки, кофемолки, электромясорубки и прочие приборы, где время работы мотора одного включения небольшое, но важно, чтобы двигатель был максимально компактным, высокооборотным и мощным.

Подключение к двигателю простейшее. От однофазной сети напряжение подается через замыкаемую кнопку «Пуск» на обмотки статора и ротора последовательного соединения. Пока кнопка в нажатом состоянии, двигатель работает. На статоре может выполняться две обмотки, в этом случае с помощью переключателя двигатель способен работать на пониженной скорости вращения.

Коллекторные двигатели имеют малый ресурс и крайне чувствительны к качеству угольно-графитовых щеток, которыми через медное кольцо подается питание на ротор.

Подключение однофазного асинхронника

Устройство асинхронного электродвигателя на 220 В приведено на схеме. По сути, это стальной корпус с уложенными внутри двумя обмотками — рабочей и пусковой. Коллектор представляет собой алюминиевую цилиндрическую болванку, насаженную на рабочий вал. Преподаватели и инженеры любят подчеркивать, что у такого прибора обмоток не две, а три, имея в виду цилиндр ротора. Но практики оперируют только пусковой и рабочей обмотками.

Из всех способов и схем подключения однофазного асинхронного электродвигателя на практике используют только три:

  1. С балластными сопротивлениями на пусковой обмотке;
  2. С кнопочным или релейным пускателем и стартовым конденсатором в цепи пусковой обмотки;
  3. С постоянно включенным рабочим конденсатором на пусковой обмотке.

Кроме того, используется комбинация последних двух, в этом случае, в дополнение к рабочему конденсатору, в схеме присутствует реле или тиристорный ключ, с помощью которых в момент пуска подключается дополнительная группа стартовых конденсаторов.

Асинхронные двигатели обладают невысоким стартовым моментом вращения, поэтому для запуска приходится прибегать к подключению по схеме дополнительных устройств в виде реле пускателя, балластного сопротивления или мощных конденсаторов.

Достаточно просто подключить однофазный асинхронный электромотор с помощью балластного сопротивления и пускателя, как на схеме.

В любых однофазных асинхронных двигателях имеется две обмотки. Они могут быть изготовлены по схеме с разделением на четыре вывода или на три вывода. В последнем случае один из выводов является общим. Чтобы определить, какие контакты к какой обмотке относятся, потребуется схема двигателя, или можно прозвонить выводы мультиметром. Пара, дающая максимальное сопротивление, означает, что измерение выполнено через две обмотки одновременно, как на схеме. Далее берем оставшийся третий вывод и через него меряем поочередно, как по схеме, сопротивления на первой и второй клемме. Рабочая обмотка асинхронного однофазного двигателя будет иметь минимальное сопротивление 10-13 Ом, сопротивление пусковой будет промежуточным 30-35 Ом.

Включение однофазных асинхронных моторов через пускатель очень простое, достаточно правильно выполнить соединение контактов с пускателем и сетевым кабелем по приведенной схеме. Управление запуском асинхронного двигателя простейшее, достаточно нажать кратковременно на кнопку пускателя, и мотор начнет работу. Выключение выполняется через обесточивание схемы. Управление асинхронными двигателями только с помощью пускателей является неэкономичным и не всегда эффективным способом раскрутить вал, особенно для высокооборотных моторов с небольшим моментом вращения.

Более экономичной является схема подключения электродвигателя 220 с конденсатором. Подключая через конденсаторы, как на приведенных схемах, получаем сдвиг фаз между двумя магнитным вращающимися потоками.

На практике отдают предпочтение схемам с одним конденсатором и комбинированной схеме с рабочим и пусковым конденсаторами. Кратковременным подключением пускового конденсатора на валу двигателя создается мощный стартовый вращающий момент, время запуска сокращается в разы.

Важно правильно подобрать емкость стартового конденсатора. Обычно для качественного запуска подключаемая к однофазному асинхроннику емкость конденсатора выбирается по схеме – на каждые 100 Вт мощности должно приходиться 7мкФ номинала.

Подключение трехфазных электродвигателей

В сравнении с однофазными трехфазные моторы обладают большей мощностью и пусковым моментом. Как правило, в домашних условиях такой электродвигатель применяется для деревообрабатывающих станков и приспособлений. При наличии трехфазной сети порядок подключения еще проще, чем у предыдущих асинхроников. Необходимо выполнить установку четырехконтактного пускателя и выполнить соединение по приведенной на корпусе схеме с контактами трехфазной сети. Такие электродвигатели допускают два вида подключений коммутацией – в виде звезды или треугольника.

Конкретные варианты соединения обмоток по схеме звезда, а чаще треугольника определяются паспортным напряжением и указаниями производителя. В случае необходимости такие электродвигатели могут также подключаться с помощью переходных конденсаторов к однофазной сети. Для этого выполняют подключение, как на схеме.

Для одного киловатта мощности необходим рабочий конденсатор емкостью в 70 мкФ и пусковой в 25 мкФ. Рабочее напряжение не менее 600 В.

Зачастую возникает проблема в определении, какие выводы относятся к обмоткам электродвигателя. Для этого можно собрать схему, приведенную на рисунке.

Ко второму зажиму подключают один из шести контактов обмоток. Вторым проводом сети, к которому подключена контрольная лампа на 220 В, поочередно касаются всех остальных контактов двигателя. При вспыхивании лампы определяют второй контакт обмотки. Проводку маркируют и убирают в сторону, а остальные контакты продолжают прозванивать по приведенной схеме. При прозвоне необходимо следить, чтобы контакты проводки не касались друг друга. Кроме того, нужно будет определить входные и выходные клеммы для каждой обмотки, прежде чем соединять их звездой или треугольником.

Заключение

Самостоятельное подключение трехфазных электродвигателей требует хороших знаний устройства и схем проверки работоспособности основных узлов. Однофазные варианты электродвигателей намного проще и не столь критичны, если допущены ошибки в определении полярности или емкости конденсатора. Но, в любом случае, при первом запуске стоит обращать внимание на нагрев корпуса и пусковых устройств, а также развиваемые электродвигателем обороты. Это поможет вовремя выявить и устранить ошибку до выхода из строя самого прибора.

Схемы на подключение асинхронных электродвигателей

Схема подключения электродвигателя, управляемого с двух мест мало чем отличается от стандартной схемы подключения двигателя, управляемого одним постом:

Из схемы видно, что в неё лишь добавлены ещё две кнопки «Пуск» и «Стоп» (посты обведены красным и зеленым пунктиром). Обратите внимание, что кнопки «Стоп» подключаются последовательно между собой, а кнопки «Пуск» — параллельно между собой в цепи управления.

Смотрите так же:  Автомат ставится перед узо или после

При нажатии любой кнопки «Пуск» цепь катушки замыкается, катушка втягивается, а при размыкании кнопки, питающее напряжение катушки будет идти через блок-контакт КМ.

Прерывание цепи управления обеспечивается нажатием любой из кнопок «Стоп».

Эта схема часто применяется для подключения трехфазного асинхронного электродвигателя там, где управлять вращением вала двигателя – к примеру в гаражных воротах, насосах, различных погрузчиках, кран-балках и т. д.

Для реверсирования электродвигателя реализуют схему изменяющую фазировку его питающего напряжения. К примеру: если подключение фаз электродвигателя условно взять как L1, L2 ,L3, то направление вращения вала будет противоположным, чем при подключении с фазировкой L3, L2,L1.

Особенностью реверсивной схемы подключения есть применение в ней двух магнитных пускателей. При этом, главные силовые контакты магнитных пускателей соединены между собой так, что при срабатывании катушки первого из пускателей, фазировка питающего напряжения электродвигателя будет отличаться от фазировки при срабатывании катушки другого.

При срабатывании первого пускателя KM1, его силовые контакты притягиваются (обведены зеленым пунктиром) и на обмотки электродвигателя поступает напряжение с фазировкой L1, L2, L3. При срабатывании второго пускателя – КМ2, напряжение на двигатель пойдет через его силовые контакты КМ2 (обведены красным пунктиром) уже будет иметь фазировку L3, L2, L1.

Магнитные пускатели подключены по стандартной схеме. Только в цепь каждой катушки последовательно включен нормально закрытый блок-контакт другого пускателя. Это воспрепятствует замыкание если ошибочно одновременно нажать обе кнопки «Пуск».

Конечно возможно и наиболее частый и более простой способ подключения трехфазного электродвигателя в однофазную сеть(при отсутствии питающего напряжения

380 в) это применение фазосдвигающего конденсатора, посредством которого питается третья обмотка электродвигателя. Более полно мы описали это в статье «Включение трехфазного электродвигателя в бытовую сеть»

Перед включением трехфазного электродвигателя в однофазную сеть убедитесь, что электродвигатель подключен «треугольником» (см. рис. ниже, вариант 2), это подключение вызывает минимальные потери мощности трёхфазного двигателя при включении его в сеть

Мощность, которую может выдать трехфазный электродвигатель при включении в однофазную сеть по схеме соединения обмоток «треугольник» может быть до 75% его номинальной. А частота вращения электродвигателя не отличается от его частоты при работе в паспортном режиме(3 фазы 380в).

Ниже показаны примеры подключения клеммных колодок трехфазных асинхронных электродвигателей 1-звезда, 2-треугольник, но должен отметить, что их вид не всегда такой, в коробке подключения могут оказаться просто две разделенные связки проводов по три провода в каждой.

Эти связки проводов и есть начало и конец обмоток двигателя, «прозвоните» их, разделите обмотки друг от друга и соедините их последовательно, когда конец одной обмотки соединяется с началом другой – это и есть подключение «треугольник» (С1-С6, С2-С4, С3-С5). Добавьте в схему включения пусковой конденсатор Сп (используемый кратковременно при запуске) и рабочий конденсатор Ср.

Если у вас двигатель мощностью до 1,5 кВт, для кнопки SB вы можете использовать обычную кнопку «пуск» из цепей управления магнитных пускателей, но если мощность выше – лучше используйте коммутационный аппарат помощнее, такой например как автомат, при этом вам придется вручную отключать пусковую ёмкость Сп после набора электродвигателем оборотов.

В нижеприведенной схеме осуществлена возможность двухступенчатого управления электродвигателем, которая позволяет уменьшать общую ёмкость конденсаторов при наборе оборотов электродвигателя.

Также отмечу, если ваш электродвигатель имеет мощность до 1 кВт, пусковой конденсатор можно вообще выкинуть из схемы.

Для вычисления ёмкости рабочего конденсатора предлагаю следующие формулы:

«Треугольник» — Сраб=4800хI/U, мкФ

«Звезда» — С раб = 2800 • I / U, мкФ

Это более точные способы, требующие измерения тока в цепи электродвигателя.

Однако зная номинальную мощность электродвигателя, можно использовать следующую формулу:

С раб = 66·Р н, мкФ, где Р н – и есть номинальная мощность двигателя.

Проще говоря, каждые 0,1 кВт мощности электродвигателя – 7 мкФ рабочего конденсатора.

Мощность 1,1 кВт – ёмкость 77 мкФ.

Такую ёмкость обычно набирают несколькими конденсаторами, которые соединяются друг с другом параллельно (общая ёмкость равна суммарной), типы конденсаторов: МБГЧ, БГТ, КБГ, рабочее напряжение должно превышать напряжение в сети в 1,5 раза.

Зная ёмкость рабочего конденсатора, определяем пусковой, его ёмкость должна превышать ёмкость рабочего в среднем в 2-3 раза, применяйте конденсаторы для запуска тех-же типов, что и рабочие. В крайнем случае, если очень кратковременный запуск, можно применить электролитические — типов К50-3, КЭ-2, ЭГЦ-М, с напряжением не менее 450 в.

Конечно существуют, и придуманы они не вчера, в ответе на первый вопрос, мы в общих чертах привели примеры правильного включения электродвигателя, не приводящие к аварийному режиму работы и как следствие к повреждению электродвигателя и преждевременному выходу его из строя. Но мы бы хотели более подробно осветить этот вопрос.

Итак прежде, чем перейти к способам защиты электродвигателей необходимо рассмотреть наиболее частые и основные причины возникновения аварийной работы асинхронных электродвигателей:

1. Однофазные и межфазные короткие замыкания – в кабеле, клемной коробке электродвигателя, обмотке статора (на корпус, межвитковые замыкания).

Внимание! КЗ(короткое замыкание) – наиболее опасный и частый вид неисправности в электродвигателе, т. к. сопровождается возникновением очень больших токов, приводящих к перегреву и сгоранию обмоток статора.

2. Тепловые перегрузки электродвигателя –возникают, когда вращение вала сильно затруднено (выход из строя подшипника, попадание мусора в шнек, запуск двигателя под слишком большой нагрузкой, либо его полная остановка).

Наиболее частой причиной тепловой перегрузки электродвигателя, приводящей к ненормальному режиму работы является пропадание одной из питающих фаз. Это вызывает значительное увеличение тока (в два раза превышающего номинальный) в статорных обмотках двух других фаз.

В результате тепловой перегрузки электродвигателя –происходит очень сильный перегрев и разрушение общей изоляции обмоток статора, приводящий к замыканию обмоток и полной неработоспособности электродвигателя.

Итак как же защитить электродвигатель от токовых перегрузок?

Главный секрет заключается в своевременном обесточивании электродвигателя при появлении в его силовой цепи или цепи управления больших токов, т. е. когда возникают короткие замыкания.

Чтобы защитить электродвигателей от коротких замыканий наиболее часто применяют плавкие вставки(предохранители), электромагнитные реле, автоматические выключатели с электромагнитным разрывом, подобранные так, чтобы они могли выдерживать высокие пусковые токи, но при этом незамедлительно срабатывали при появлении токов короткого замыкания.

Если стоит задача защитить электродвигатель от тепловых перегрузок в схему подключения электродвигателя применяют тепловое реле, имеющее в своём исполнении контакты цепи управления – посредством которых подаётся питающее напряжение на катушку магнитного пускателя.

Если возникнут тепловые перегрузки — эти контакты разомкнуться и прервут питание катушки, что приведёт к возврату группы силовых контактов в первоначальное положение – электродвигатель обесточен.

Самым простым и безотказном способом защиты электродвигателя от пропадания фаз будет добавление в схему подключения электродвигателя дополнительно магнитного пускателя:

При включение автоматического выключателя 1 происходит замыкание цепи питания катушки магнитного пускателя 2 (при этом рабочее напряжение указанной катушки должно составлять

380 вольт) и замыкание силовых контактов 3 пускателя, посредством которого (используется только один контакт) подаётся питание катушки магнитного пускателя 4.

Включение кнопки «Пуск» 6 непосредственно через кнопку «Стоп» 8 вызывает замыкание цепи питания катушки 4, следующего магнитного пускателя (её рабочее напряжение имеет значение как 380 так и 220 в), замыкает его силовые контакты 5, и на двигатель подаётся напряжение.

Если отжать кнопку «Пуск» 6, напряжение с силовых контактов 3 будет проходить через нормально разомкнутый блок-контакт 7, при этом обеспечивая неразрывность цепи питания катушки магнитного пускателя.

Как можно увидеть из этой схемы защиты электродвигателя, отсутствие(по каким-либо причинам) любой из фаз напряжение подаваемых на электродвигатель – обесточит электродвигатель, что сохранит его от тепловых перегрузок и преждевременного выхода его из строя.

При соединении трёхфазного электродвигателя треугольником обмотки статора соединяются последовательно – конец одной обмотки соединён с началом следующей (рис 2).

Клемные колодки электродвигателей и схемы соединения обмоток:

Если не вдаваться в подробности основ теории электротехники, отметим главное — электродвигатели с обмотками, соединёнными звездой работают намного мягче, чем электродвигатели с соединением обмоток в треугольник, но нельзя не отметить, что при соединении обмоток звездой двигатель не способен выдать максимальную мощность. Если соединить обмотки треугольником, двигатель выдаст полную паспортную мощность (приблизительно в 1,5 раза выше, чем при соединении звездой), но значения пусковых токов будут высокими.

Поэтому наиболее желательно (в частности это очень актуально для электродвигателей большой мощности) подключение по схеме звезда – треугольник; при этом запускается электродвигатель по схеме звезда, после чего (когда электродвигатель «вышел на паспортные обороты»), автоматически переключается на схему подключения треугольник.

При этом схема управления должна выглядит так:

При подключение оперативного напряжения через контакт NC (нормально закрытый) реле времени К1 и контакт NC К2, в цепи катушки пускателя К3.

При включение пускателя К3, размыкает контакт К3 в цепи катушки пускателя К2 (блокирующего случайное включение) и замыкает контакт К3, в цепи катушки магнитного пускателя К1 – он совмещен с контактами реле времени.

Смотрите так же:  Провода на форсунки газель

При включении пускателя К1 замыкается контакт К1 в цепи катушки магнитного пускателя К1 и одновременно включается реле времени, размыкается контакт реле времени К1 в цепи катушки пускателя К3, замыкает контакт реле времени К1 в цепи катушки пускателя К2.

Отключение пускателя К3, замыкается контакт К3 в цепи катушки магнитного пускателя К2. Включение пускателя К2, размыкает контакт К2 в цепи катушки пускателя К3.

На начала обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся рабочее напряжение. Срабатывание магнитного пускателя К3 его силовые контакты К3, таким образом, соединяя концы обмоток U2, V2 и W2 – обмотки двигателя соединены звездой.

Далее срабатывает реле времени, совмещённое с пускателем К1, отключая пускатель К3 и одновременно включая К2 – замыкаются силовые контакты К2 и подаётся напряжение на концы обмоток электродвигателя U2, V2 и W2. Теперь электродвигатель включен по схеме треугольник.

· магнитного пускателя и защиты от сверхтоков (автоматический выключатель — автомат).

Сами схемы подключения могут быть разными и зависят от:

· типа магнитного пускателя, а конкретнее — от рабочего напряжения его катушки К (220 в или 380 в);

· от наличия теплового реле, которое подключается последовательно с катушкой пускателя. Превышения тока, потребляемого электродвигателем вызывает размыкание контактов теплового реле, что приводит к обесточиванию катушки и отключению электродвигателя.

Схемы подключения трёхфазного электродвигателя

Обозначения на схемах:

1 — выключатель автоматический (3х-полюсный автомат),

2 — тепловое реле с размыкающими контактами,

3 — группа контактов магнитного пускателя,

4 — катушка магнитного пускателя (в данном случае рабочее напряжение катушки — 220 в), 5 — блок-контакт нормально разомкнутый,

Отличие этих схем подключения электродвигателей состоит в использовании разных магнитных пускателей в этих схемах. В первом случае используется магнитный пускатель с рабочим напряжением катушки 4 — 220 в; для её питания используется фаза С (можно любую другую) и ноль — N.

Во втором случае электродвигатель подключается через магнитный пускатель с катушкой 4 на 380 в. Для её питания используются фазы B и С.

Схема подключения электродвигателя. Подключение однофазного электродвигателя

Существует несколько схем подключения электродвигателей. Всё зависит от того, какой тип машины используется. В быту каждый человек использует множество электрических приборов, около 2/3 из общего числа имеют в своей конструкции электрические двигатели различной мощности с разными характеристиками.

Обычно, когда приборы выходят из строя, двигатели могут продолжать работать. Их можно использовать в других конструкциях: изготовить самодельные станки, электронасосы, газонокосилки, вентиляторы. Но вот нужно определиться с тем, какую схему использовать для подключения к бытовой сети.

Конструкция электродвигателей и подключение

Для того чтобы использовать электрические моторы для самодельных аппаратов, нужно произвести правильно подключение обмоток. В однофазную бытовую сеть 220 В можно включить следующие машины:

  1. Асинхронные трехфазные электрические двигатели. Производится к сети подключение электродвигателей «треугольником» или «звездой».
  2. Асинхронные электромоторы, работающие от сети с одной фазой.
  3. Коллекторные двигатели, оснащенные щеточной конструкцией для питания ротора.

Все остальные электрические двигатели необходимо подключать при помощи сложных устройств, предназначенных для запуска. А вот шаговые моторы должны оснащаться специальными электронными схемами управления. Без знаний и умений, а также специальной аппаратуры, выполнить подключение невозможно. Приходится использовать сложные схемы подключения электродвигателей.

Одно- и трехфазная сеть

В бытовой сети одна фаза, напряжение в ней 220 В. Но можно подключить к ней и трехфазные электродвигатели, рассчитанные на напряжение 380 В. Для этого используются специальные схемы, вот только выжать из устройства больше 3 кВт мощности практически нереально, так как увеличивается риск привести в негодность электропроводку в доме. Поэтому если имеется необходимость установки сложного оборудования, в котором требуется применять электрические двигатели на 5 или 10 кВт, лучше провести в дом трехфазную сеть. Подключение электродвигателей «звездой» к такой сети произвести намного проще, нежели к однофазной.

Что потребуется для подключения мотора

Принцип работы любого электрического двигателя знаком каждому, основан он на вращении магнитного потока. При подключении однофазных электродвигателей вам теория не очень нужна, поэтому хватит следующих знаний:

  1. Вы должны иметь представление о конструкции электрического двигателя, с которым производятся работы.
  2. Знать, для какой цели предназначены обмотки, а также уметь по схеме подключения электродвигателя осуществить монтаж.
  3. Уметь работать со вспомогательными устройствами – балластными сопротивлениями или пусковыми конденсаторами.
  4. Знать, как подключается электродвигатель при помощи магнитного пускателя.

Запрещается включать электрический двигатель, если не знаете его модель, а также назначение выводов. Обязательно проверьте, какое допускается соединение обмоток при работе в сети 220 и 380 В. На всех электрических двигателях обязательно присутствует табличка из металла, которая прикреплена к корпусу. На ней указывается модель, тип, схема подключения, напряжение, а также другие параметры. Если нет никаких данных, то необходимо при помощи мультиметра прозвонить все обмотки, после чего правильно соединить их.

Подключение коллекторного двигателя

Такие электродвигатели используются практически во всех бытовых электроприборах. Их можно встретить в стиральных машинках, кофемолках, мясорубках, шуруповертах, обогревателях и прочих приборах. Электродвигатели рассчитаны на сравнительно небольшое время работы, включаются они на несколько секунд или минут. Но зато моторы очень компактные, высокооборотные и мощные. А схема подключения электродвигателя очень простая.

Подключить такой электродвигатель к бытовой сети 220 В можно очень просто. Напряжение поступает от фазы к щетке, затем через обмотку ротора — к противоположной ламели. А вторая щетка снимает напряжение и передаёт его на обмотку статора. Она состоит из двух половин, соединенных последовательно. Второй вывод обмотки поступает на нулевой провод питания.

Особенности включения мотора

Для того чтобы включать и отключать электрический двигатель, применяется кнопка с фиксатором (или без него), но можно использовать и простой выключатель. Если имеется необходимость, то обе обмотки разделяются и их можно подключать попеременно. Этим достигается изменение частоты вращения ротора. Но имеется один недостаток у таких двигателей — относительно низкий ресурс, который напрямую зависит от качества щёток. Именно коллекторный узел является самым уязвимым местом двигателя.

Как подключить однофазный асинхронный мотор

В любом асинхронном электродвигателе, рассчитанном на питание от однофазной сети 220 В, имеется две обмотки — пусковая и рабочая. В качестве «коллектора» используется цилиндрическая болванка из алюминия, которая насажена на валу. Можно даже отметить, что цилиндр на роторе является, по сути, короткозамкнутой обмоткой. Существует множество схем для включения асинхронного мотора, но применяется на практике немного:

  1. С использованием балластного сопротивления, подключенного к обмотке пуска.
  2. С включенным конденсатором на обмотке запуска.
  3. При помощи кнопочного или релейного пускателя, стартового конденсатора, включенного в цепь обмотки пуска.

Очень часто применяется комбинация кнопочного или релейного пускателя, а также постоянно включенного рабочего конденсатора. Вместо реле очень часто используется электронный ключ на тиристоре. При помощи этого переключателя производится подключение однофазного электродвигателя с дополнительной группой конденсаторов.

Практические схемы

Асинхронные электрические двигатели обладают довольно маленьким на старте крутящим моментом. Поэтому необходимо использовать дополнительные устройства, например, пусковые реле или балластные сопротивления, а также мощные конденсаторы для подключения однофазных электродвигателей. Обмотки в моторах изготавливаются с разделением на несколько выводов. Если три вывода, то один из них общий. Но может быть четыре или два.

Для того чтобы понять, к каким конкретно контактам подключена та или иная обмотка, необходимо изучить схему мотора. Если ее нет, потребуется осуществить прозвонку с помощью мультиметра. Для этого переведите его в режим измерения сопротивления. Если на паре выводов большое сопротивление, то это означает, что вы произвели замер одновременно двух обмоток. Обычно у рабочей обмотки асинхронных двигателей сопротивление не более 13 Ом. У пусковой же оно практически в три раза выше — примерно 35 Ом.

Для того чтобы подключить при помощи пускателя однофазный асинхронный мотор, достаточно лишь правильно соединить все контакты проводами. Для того чтобы запустить асинхронник, необходимо кратковременно включить в цепи дополнительные элементы — конденсатор или балластное сопротивление. Чтобы выключить электрическую машину, достаточно просто обесточить все обмотки.

Трехфазные электродвигатели

В трехфазных электрических двигателях существенно большая мощность, а также крутящий момент во время запуска. Подключение трехфазного электродвигателя простое только в том случае, если имеется розетка с тремя фазами 380 В. Но использовать в бытовых условиях такие моторы оказывается проблематично, так как трехфазная сеть есть далеко не у всех дома. Обмотки соединяются по схеме «звезда» или «треугольник», это зависит от того, какое межфазное напряжение в сети.

Но вот в том случае, если вам потребуется подключить такой электрический двигатель в бытовую сеть, придётся использовать маленькую хитрость. По сути, у вас имеется в розетке ноль и фаза. При этом «0» можно считать как один из выводов источника питания, то есть фазу, у которой сдвиг равен нулю.

Чтобы сделать еще одну фазу, необходимо при помощи дополнительного конденсатора осуществить сдвиг фазы питания. Всего должно быть три фазы, каждая имеет сдвиг относительно соседних на 120 градусов. Но чтобы сделать сдвиг правильно, необходимо рассчитать емкость конденсаторов. Так, на каждый киловатт мощности электродвигателя потребуется рабочая емкость около 70 мкФ, а также пусковая около 25 мкФ. При этом они должны быть рассчитаны на напряжение от 600 В и выше.

Смотрите так же:  Как проверить ток аккумулятора мультиметром

Но лучше всего производить подключение электродвигателей 380 В трехфазного типа с помощью частотных преобразователей. Существуют модели, которые подключаются к однофазной сети, а при помощи специальных инверторных схем они преобразуют напряжение, в результате чего на выходе оказывается три фазы, которые необходимы для питания асинхронного мотора.

Однофазный электродвигатель: схема подключения

Электродвигатели однофазные 220В широко используются в разнообразном промышленном и бытовом оборудовании: насосах, стиральных машинах, холодильниках, дрелях и обрабатывающих станках.

Разновидности

Существуют две наиболее востребованных разновидности этих устройств:

Последние по своей конструкции более просты, однако обладают рядом недостатков, среди которых можно отметить трудности с изменением частоты и направления вращения ротора.

Устройство асинхронного двигателя

Мощность данного двигателя зависит от конструктивных особенностей и может варьироваться от 5 до 10 кВт. Его ротор представляет короткозамкнутую обмотку – алюминиевые или медные стержни, которые замкнуты с торцов.

Как правило, электродвигатель асинхронный однофазный оборудован двумя смещенными на 90° относительно друг друга обмотками. При этом главная (рабочая) занимает существенную часть пазов, а вспомогательная (пусковая) – оставшуюся. Свое название электродвигатель асинхронный однофазный получил лишь потому, что он имеет только одну рабочую обмотку.

Принцип работы

Протекающий по главной обмотке переменный ток создает магнитное периодически меняющееся поле. Оно состоит из двух кругов одинаковой амплитуды, вращение которых происходит навстречу друг другу.

В соответствии с законом электромагнитной индукции, меняющийся в замкнутых витках ротора магнитный поток образует индукционный ток, который взаимодействует с полем, порождающим его. Если ротор находится в неподвижном положении, моменты сил, действующих на него, одинаковы, в результате он остается неподвижным.

При вращении ротора, нарушится равенство моментов сил, так как скольжение его витков по отношению к вращающимся магнитным полям станет разным. Таким образом, действующая на роторные витки от прямого магнитного поля сила Ампера будет существенно больше, чем со стороны обратного поля.

В витках ротора индукционный ток может возникать только в результате пересечения ими силовых линий магнитного поля. Их вращение должно осуществляться со скоростью, чуть меньше частоты вращения поля. Собственно отсюда и пошло название асинхронный однофазный электродвигатель.

Вследствие увеличения механической нагрузки уменьшается скорость вращения, возрастает индукционный ток в роторных витках. А также повышается механическая мощность двигателя и переменного тока, который он потребляет.

Схема подключения и запуска

Естественно, что вручную раскручивать при каждом запуске электродвигателя ротор неудобно. Поэтому для обеспечения первоначального пускового момента применяется пусковая обмотка. Так как она составляет прямой угол с рабочей обмоткой, для образования вращающегося магнитного поля на ней должен быть сдвинут по фазе ток относительно тока в рабочей обмотке на 90°.

Этого добиться можно посредством включения в цепь фазосмещающего элемента. Дроссель или резистор не могут обеспечить сдвиг фазы на 90°, поэтому целесообразней в качестве фазосмещающего элемента использовать конденсатор. Такая схема однофазного электродвигателя обладает отличными пусковыми свойствами.

Если в качестве фазовращающего элемента выступает конденсатор, электродвигатель конструктивно может быть представлен:

  • С рабочим конденсатором.
  • С пусковым конденсатором.
  • С рабочим и пусковым конденсатором.

Наиболее распространенным является второй вариант. В таком случае предусмотрено недолгое подключение пусковой обмотки с конденсатором. Это происходит только на время пуска, затем они отключаются. Реализовать такой вариант можно при помощи реле времени или посредством замыкания цепи при нажатии пусковой кнопки.

Подобная схема подключения однофазного электродвигателя характеризуется довольно невысоким пусковым током. Однако в номинальном режиме параметры низкие по причине того, что поле статора – эллиптическое (оно сильнее в направлении полюсов).

Схема с постоянно включенным рабочим конденсатором в номинальном режиме работает лучше, при этом пусковые характеристики имеет посредственные. Вариант с рабочим и пусковым конденсатором, по сравнению с двумя предыдущими, является промежуточным.

Коллекторный двигатель

Рассмотрим однофазный электродвигатель коллекторного типа. Это универсальное оборудование может питаться от источников постоянного или переменного тока. Его часто используют в электрических инструментах, стиральных и швейных машинах, мясорубках – там, где требуется реверс, его вращение с частотой свыше 3000 оборотов в минуту или регулировка частоты.

Обмотки ротора и статора электродвигателя соединяются последовательно. Ток подводится посредством щеток, соприкасающихся с пластинами коллектора, к которым подходят концы обмоток ротора.

Осуществление реверса происходит за счет изменения полярности подключения ротора или статора в электрическую сеть, а скорость вращения регулируется посредством изменения в обмотках величины тока.

Недостатки

Коллекторный однофазный электродвигатель имеет следующие недостатки:

  • Создание радиопомех, трудное управление, значительный уровень шума.
  • Сложность оборудования, практически невозможно произвести его ремонт самостоятельно.
  • Высокая стоимость.

Подключение

Чтобы электродвигатель в однофазной сети был подключен должным образом, необходимо соблюдать определенные требования. Как уже было сказано, существует целый ряд двигателей, способных функционировать от однофазной сети.

Перед подключением важно убедиться в том, что частота и напряжение сети, указанные на корпусе, соответствуют главным параметрам электрической сети. Все работы по подключению необходимо производить только при обесточенной схеме. Также следует избегать заряженных конденсаторов.

Как подключить однофазный электродвигатель

Для подключения двигателя необходимо соединить последовательно статор и якорь (ротор). Клеммы 2 и 3 соединяются, а две другие нужно подключить в цепь 220B.

По причине того, что электродвигатели однофазные 220В функционируют в цепи переменного тока, в магнитных системах возникает магнитный переменный поток, что провоцирует образование вихревых токов. Именно поэтому магнитную систему статора и ротора выполняют из электротехнических стальных листов.

Подключение без регулирующего блока с электроникой может привести к тому, что в момент запуска образуется значительный пусковой ток, и в коллекторе произойдет искрение. Изменение направления вращения якоря выполняется посредством нарушения последовательности подключения, когда меняются местами выводы якоря или ротора. Главным недостатком этих двигателей считается присутствие щеток, которые следует заменять после каждой длительной эксплуатации оборудования.

Таких проблем в асинхронных электродвигателях не существует, так как в них отсутствует коллектор. Магнитное поле ротора образуется без электрических связей за счет внешнего магнитного поля статора.

Подключение через магнитный пускатель

Рассмотрим, как можно подключить однофазный электродвигатель через магнитный пускатель.

1. Итак, в первую очередь необходимо выбрать магнитный пускатель по току таким образом, чтобы его контактная система выдерживала нагрузку электрического двигателя.

2. Пускатели, к примеру, делятся на величину от 1 до 7, и чем больше данный показатель, тем больший ток выдерживает контактная система этих устройств.

3. После того как была определена величина пускателя, необходимо обратить внимание на катушку управления. Она может быть на 36B, 380B и 220B. Желательно остановиться на последнем варианте.

4. Далее, собирается схема магнитного пускателя, и подключается силовая часть. На разомкнутые контакты выполняется ввод 220B, на выход силовых контактов пускателя подключается электродвигатель.

5. Подключаются кнопки «Стоп – Пуск». Их питание осуществляется от ввода силовых контактов пускателя. К примеру, фаза соединяется с кнопкой «Стоп» замкнутого контакта, затем с нее переходит на пусковую кнопку разомкнутого контакта, а с контакта кнопки «Пуск» – на один из контактов катушки магнитного пускателя.

6. На второй вывод пускателя подключается «ноль». Чтобы зафиксировать включенное положение магнитного пускателя, необходимо шунтировать пусковую кнопку замкнутого контакта к блоку контактов пускателя, подающего питание с кнопки «Стоп» на катушку.

Похожие статьи:

  • Аккумулятор на 380 вольт Инверторная система для дома 5 кВт Код товара: 0800070 Наличие: на удаленном складе в Москве по Москве — от 500 руб. по России — от 500 руб. самовывоз — по предзаказу Инверторная система бесперебойного питания UR-5000 […]
  • Как проверить зарядное устройство шуруповерта мультиметром Своими руками - Как сделать самому Как сделать что-то самому, своими руками - сайт домашнего мастера Ремонт зарядки шуруповерта своими руками ОТЛИЧНЫЙ ИНСТРУМЕНТ ДЛЯ МАСТЕРОВ И РУКОДЕЛИЯ И ВСЕ ДЛЯ САДА, ДОМА И ДАЧИ БУКВАЛЬНО ДАРОМ - […]
  • Высоковольтные провода для классики Lada-forum.ru Высоковольтные провода. Спасибо Не нравится VeNoM 05 Ноя 2007 Спасибо Не нравится REYNOR 05 Ноя 2007 Знатоки, подскажите плииз чайнику какие провода выбрать? Понятно, что силикон, но может быть есть ещё какие-то […]
  • Установка розеток в панельных домах Перенос розеток в квартире панельного дома своими руками: пошаговая инструкция Перенос розетки своими руками может потребоваться во ремонта, после приобретения новой техники или при желании сделать расположение электрических разъемов […]
  • Пускатель магнитный 10а ip54 Пускатель ПМ12-010110, без теплового реле, нереверсивный, 10А, IP54, без кнопок Артикул / Модель: ПМ12-010110 Магнитные пускатели серии ПМ12 Российского производства, пожалуй, самые распространенные в нашей стране аппараты для […]
  • Опережение электронного зажигания схема Опережение электронного зажигания схема СХЕМА ЭЛЕКТРОННОГО КОРРЕКТОРА УГЛА ОПЕРЕЖЕНИЯ ЗАЖИГАНИЯ МОТОЦИКЛОВ «УРАЛ», «ДНЕПР» Предлагаем применить устройство, работающее с блоком электронного зажигания, схема которого приведена на рис. […]