Стартер для люминесцентных ламп схема с одной лампой

Для чего нужен стартер и дроссель в схемах включения люминесцентных ламп

Основными элементами схемы включения люминесцентной лампы с электромагнитным ПРА являются дроссель и стартер. Стартер это миниатюрная неоновая лампа, один или оба электрода которой выполнены из биметалла. При возникновении тлеющего разряда внутри стартера биметаллический электрод нагревается и, затем изгибаясь, накоротко смыкается со вторым электродом.

После подачи напряжения на схему ток через люминесцентную лампу не течет, так как газовый промежуток внутри лампы это изолятор, и для пробоя его нужно напряжение, превышающее напряжение питающей сети. Поэтому загорается только лампочка стартера, напряжение зажигания которой ниже сетевого. Ток величиной 20 — 50 мА течет по дросселю, электродам люминесцентной лампы, неоновой лампе стартера.

Стартер состоит стеклянного баллона, наполненного инертным газом. В баллон впаяны металлический неподвижный и биметаллический электроды, имеющие выводы, проходящие через цоколи. Баллон заключен в металлический или пластмассовый корпус с отверстием в верхней части.

Схема устройства стартера тлеющего разряда: 1 — выводы, 2 — металлический подвижный электрод, 3 — стеклянный баллон, 4 — биметаллический электрод, 6 — цоколь

Стартеры для включения люминесцентных ламп в сеть выпускаются на напряжение 110 и 220 В.

Под воздействием тока электроды стартера разогреваются и замыкаются. После замыкания по цепи течет ток, превышающий в 1,5 раза номинальный ток лампы. Величина этого тока ограничена в основном сопротивлением дросселя, так как электроды стартера замкнуты, а электроды ламп имеют незначительное сопротивление.

Элементы схемы с дросселем и стартером: 1 — зажимы сетевого напряжения; 2 — дроссель; 3, 5 — катоды лампы, 4 — трубка, 6, 7 — электроды стартера, 8 — стартер.

За 1 — 2 с электроды лампы разогреваются до 800 — 900 °С, вследствие этого увеличивается электронная эмиссия и облегчается пробой газового промежутка. Электроды стартера остывают, так как разряда в нем нет.

При остывании стартера электроды возвращаются в исходное состояние и разрывают цепь. В момент разрыва цепи стартером возникает э. д. с. самоиндукции в дросселе, величина которой пропорциональна индуктивности дросселя и скорости изменения тока в момент разрыва цепи. Образовавшееся за счет э. д. с. самоиндукции повышенное напряжение (700 — 1000 В) импульсом прикладывается к лампе, подготовленной к зажиганию (электроды разогреты). Происходит пробой, и лампа начинает светиться.

К стартеру, который включен параллельно лампе, прикладывается приблизительно половина напряжения сети. Этой величины недостаточно для пробоя неоновой лампочки, поэтому она больше не зажигается. Весь период зажигания длится меньше 10 с.

Рассмотрение процесса зажигания лампы позволяет уточнить назначение основных элементов схемы.

Стартер выполняет две важные функции:

1) замыкает накоротко цепь для того, чтобы повышенным током разогреть электроды лампы и облегчить зажигание,

2) разрывает после разогрева электродов лампы электрическую цепь и тем самым вызывает импульс повышенного напряжения, обеспечивающего пробой газового промежутка.

Дроссель выполняет три функции:

1) ограничивает ток при замыкании электродов стартера,

2) генерирует импульс напряжения для пробоя лампы за счет э. д. с. самоиндукции в момент размыкания электродов стартера,

3) стабилизирует горение дугового разряда после зажигания.

Схема импульсного зажигания люминесцентной лампы в работе:

Схемы включения люминесцентных ламп с электромагнитными ПРА

Д ля поддержания и стабилизации процесса разряда последовательно с люминесцентной лампой включается балластное сопротивление в сети переменного тока в виде дросселя или дросселя и конденсатора . Эти устройства называют пускорегулирующими аппаратами (ПРА) .

Напряжение сети, при котором работает люминесцентная лампа в установившемся режиме, недостаточно для ее зажигания. Для образования газового разряда, т. е. пробоя газового пространства, необходимо повысить эмиссию электронов путем их предварительного разогрева или подачи на электроды импульса повышенного напряжения. То и другое обеспечивается с помощью стартера, включенного параллельно лампе.

Схема включения люминесцентной лампы: а — с индуктивным балластом, б — с индуктивно-емкостным балластом.

Рассмотрим как происходит процесс зажигания люминесцентной лампы.

Стартер представляет собой миниатюрную лампочку тлеющего разряда с неоновым наполнением, имеющую два биметаллических электрода, которые в нормальном положении разомкнуты.

При подаче напряжения в стартере возникает разряд и биметаллические электроды, изгибаясь, замыкаются накоротко. После их замыкания ток в цепи стартера и электродов, ограниченный только сопротивлением дросселя, возрастает до двухтрехкратного значения рабочего тока лампы и происходит быстрый разогрев электродов люминесцентной лампы. В это же время биметаллические электроды стартера, остывая, размыкают его цепь.

В момент разрыва цепи стартером в дросселе возникает импульс повышенного напряжения, вследствие которого происходят разряд в газовой среде люминесцентной лампы и ее зажигание. После того как лампа зажглась, напряжение на ней составляет около половины сетевого. Такое напряжение будет и на стартере, однако этого оказывается недостаточно для его повторного замыкания. Поэтому при горящей лампе стартер разомкнут и в работе схемы не участвует.

Одноламповая стартерная схема включения люминесцентной лампы: Л — люминесцентная лампа, Д — дроссель, Ст — стартер, С1 — С3 — конденсаторы.

Конденсатор, включенный параллельно стартеру, и конденсаторы на входе схемы предназначены для снижения уровня радиопомех. Конденсатор, включенный параллельно стартеру, кроме того, способствует увеличению срока службы стартера и влияет на процесс зажигания лампы, способствуя значительному снижению импульса напряжения в стартере (с 8000 -12 000 В до 600 — 1500 В) при одновременном увеличении энергии импульса (за счет увеличения его продолжительности).

Недостатком описанной стартерной схемы является низкий cos фи, не превышающий 0,5. Повышение cos фи достигается либо включением конденсатора на вводе, либо применением индуктивно-емкостной схемы. Однако и в этом случае cos фи 0,9 — 0,92 в результате наличия высших гармонических составляющих в кривой тока, определяемых спецификой газового разряда и пускорегулирующей аппаратурой.

В двухламповых светильниках компенсация реактивной мощности достигается при включении одной лампы с индуктивным, а другой с индуктивно-емкостным балластом. В этом случае cos фи = 0,95. Кроме того, такая схема ПРА позволяет сгладить в значительной степени пульсации светового потока люминесценых ламп.

Схема включения люминесцентных ламп с ПРА с расщепленной фазой

Наибольшее распространение для включения люминесцентных ламп мощностью 40 и 80 Вт получила у нас двухламповая импульсная схема стартерного зажигания с применением балластных компенсированных устройств 2УБК-40/220 и 2УБК-80/220, работающих по схеме «расщепленной фазы». Они представляют собой комплектные электрические аппараты с дросселями, конденсаторами и разрядными сопротивлениями.

Последовательно с одной из ламп включается только дроссель-индуктивное сопротивление, что создает отставание тока по фазе от приложенного напряжения. Последовательно со второй лампой, помимо дросселя, включается конденсатор, емкостное сопротивление которого больше индуктивного сопротивления дросселя примерно в 2 раза, создающий опережение тока, в результате чего суммарный коэффициент мощности комплекта получается порядка 0,9 -0,95.

Кроме того, включение последовательно с дросселем одной из двух ламп специально подобранного конденсатора обеспечивает такой сдвиг фаз между токами первой и второй ламп, при котором глубина колебаний суммарного светового потока двух ламп будет существенно уменьшена.

Для увеличения тока подогрева электродов последовательно с емкостью включается компенсирующая катушка, которая отключается стартером.

Монтажная схема включения двухлампового стартерного аппарата 2УБК: Л — люминесцентная лампа, Ст- стартер, С — конденсатор, r — разрядное сопротивление. Корпус ПРА 2УБК показан пунктиром.

Недостатки стартерных схем включения (значительный шум, создаваемый ПРА при работе, возгораемость при аварийных режимах и др.), а также низкое качество выпускаемых стартеров привели к настойчивым поискам бесстартерных экономически целесообразных рациональных ПРА с тем, чтобы в первую очередь применить их в установках, где достаточно просты и дешевы.

Для надежной работы бесстартерных схем которых рекомендуется применять лампы с нанесенной на колбы токопроводящей полосой.

Наибольшее распространение получили трансформаторные схемы быстрого пуска люминесцентных ламп в которых в качестве балластного сопротивления используется дроссель, а предварительный подогрев катодов осуществляется накальным трансформатором либо автотрансформатором.

Бесстартерные одноламповая и двухламповая схемы включения люминесцентных ламп: Л — люминесцентная лампа, Д — дроссель, НТ — накальный трансформатор

В настоящее время расчетами установлено, что стартерные схемы для внутреннего освещения более экономичны, и поэтому они имеют преимущественное распространение. В стартерных схемах потери энергии составляют примерно 20 — 25%, в бесстартерных — 35%

Смотрите так же:  Единица измерения индуктивности тока

В последнее время схемы включения люминесцентных ламп с электромагнитными ПРА постепенно вытесняются схемами с более функциональными и экономичными электронными пускорегулирующими аппаратами (ЭПРА).

  1. Главная
  2. Освещение
  3. Схема люминесцентной лампы и как подключить лампу дневного света

Схема люминесцентной лампы и как подключить лампу дневного света

Люминесцентная лампа — это запаянная трубка, внутри которой находятся пары газа, которые под воздействием электрического разряда (пробоя) переходят в возбуждённое состояние и бомбардируют слой люминофора, нанесённый изнутри на колбу лампы. Эта бомбардировка и вызывает свечение. Для того чтобы «пробить» разрядом газовую среду, которая плохо проводит электричество, необходим первичный импульс – сильный первоначальный ток. После включения, необходимо поддерживать внутри колбы «тлеющий разряд», который позволит обеспечить свечение слоя люминофора даже при кратковременном отключении питания. Отсюда – как сложности, так и преимущества подключения люминесцентных ламп, физика которых основана не на прямом накале светящейся нити.

Что горит в люминесцентной лампе?

На самом деле много чего. Спираль, которая является источником возбуждённых электронов. Газ, ионизация которого заставляет светиться слой люминофора, сам газ внутри колбы (свечения которого мы не видим) и стартёр, имеющий световую индикацию исправности.

Давайте теперь посмотрим, что такое схема люминесцентной лампы:

Для человека, знакомого с кабалой электрических схем всё очевидно. Диодный мост исключает пробой на L4 и С1, R1-2 демпфируют импульсные токи на контуре EN, а дополнительный диод позволяет конденсатору схватывать излишки токов.

Это схема полностью объясняет, как подключить люминесцентную лампу, и, кстати, как экономить электроэнергию. Обратите внимание, исключив Z и D7, мы получим существенное снижение пускового тока, что позволит экономить на электроэнергии!

Не понятно? Хорошо. Давайте немного упростим задачу

Для бытовых целей этого достаточно. Но подключение люминесцентных ламп имеет особенность. Стоит иметь в виду, что эта картинка подключения одной лампы. Если подключаем своими руками несколько ламп, то нужно принять во внимание, что последовательное подключение проще, надежнее и боле экономно в смысле затрат энергии. Это напрямую связано с заголовком этой части статьи – что светит. Импульс стартёра , передаваемый последовательно, позволяет упростить пуск каждой следующей лампы. Иначе говоря, заряд расходуемый на пуск первой лампы передается дальше , снижая затраты на пуск второй и так далее.

А горит в лампе люминофор , который после установления в колбе необходимых условий «тлеет» с очень небольшим потреблением электричества. Отсюда и энергосберегающие свойства этих ламп, и всех производных – вроде компактных, энергосберегающих ламп , которые, по сути, остались люминесцентными.

Варианты подключения люминесцентных ламп

Строго говоря, вариантов как выбрать, установить и подключить люминесцентную лампу немного. Эти параметры задаёт схема люминесцентной лампы, а также компоновка осветительного прибора. Обратите внимание – мы в этой статье не рассматриваем характеристики освещенности , нас больше интересует вопрос, как подключить люминесцентную лампу правильно. Исходя из этой задачи, мы имеем в виду что:

  • Нагрузка на электропроводку должна быть минимальна;
  • Условия эксплуатации требуют именно такой лампы (об этом ниже);
  • Параметры сети стабильны (плавная регулировка диммерами невозможна, а перепады напряжения это постоянная замена сгоревших люминесцентных ламп);
  • Требования к освещению помещения не позволяют использовать лампы накаливания, или это прямая экономия на электроэнергии;
  • Каждая лампа это отдельный прибор, снабженный демпфирующим дросселем, балластом и стартёром, причём использовать даже в промышленных масштабах мощных дроссель на 10-ть ламп невозможно.

Из этого вытекает, что каждая люминесцентная лампа, применяемая нами в быту, должна точно занимать своё место. Причём в отличие от иных видов ламп освещения , это место которое снабжено:

  • Специальным цоколем (за исключением адаптированных к винтовым цоколям энергосберегающих ламп);
  • Специальным «глушителем» света (абажуром). Как правило, матовым стеклом, которое позволяет убрать эффект «мерцания»;
  • Доступом. Когда замена люминесцентных ламп и элементов прибора (обычно стартёров) делается быстро, без особых трудозатрат.

Сам процесс подключения должен выглядеть таким образом. Мы берём фазу, на которую вешаем контакт лампы. Нейтральный провод присоединяем к дросселю, от которого замыкаем второй контакт в лампе. При подаче напряжения лампа будет «моргать», примерно раза три-четыре в минуту. Это значит, что ток пробоя достаточен.

Для плавного пуска лампы нужен стартёр, он же балласт, он же ключевой элемент Пусковой Регулирующей Аппаратуры (ПРА). Сегодня более применимы Электронные ПРА, ЭПРА. Главная задача балласта – балансировать нагрузку. Иначе говоря, не позволять дросселю «плеваться зарядом», что приводит к вспышкам, а не спокойному горению лампы. Ещё раз посмотрите на схему:

Балласт висит над контактами лампы, балансируя разряды внутри колбы. Название не случайно, стартёр не только запускает непрерывный разряд внутри лампы, но и не позволяет этому разряду выйти за рамки внутри колбы. Случаев взрыва люминесцентных ламп практически нет, но «чёрная трубка» это скорее правило, а не исключение. Тот самый случай, когда люминофор выгорел из-за переразряда. Обычно так происходит, когда стартёр выходит из строя после того, как лампа зажглась.

Подключение люминесцентных ламп делаем последовательно, следя за тем, чтобы и дроссель и стартёр работали каждый на свою лампу. При подключении готового светильника (в котором много ламп) убедимся в том, что стартёров столько, сколько ламп, иначе выход из строя одного стартёра может выключить весь осветительный прибор.

Мы понимаем, что этот тип освещения, не боится влаги, перепадов температур и безопасен как источник пожара (кроме короткого замыкания ), поэтому в аквариумах другие лампы не используют , а там влажность в зоне светильника почти 100%.

Ещё мы помним, что ЛЛ – это источник яда и заражения . Поэтому не будем их устанавливать там, где они могут быть физически разрушены. Что ещё осталось узнать про люминесцентные лампы, о чём предпочитают не писать в сети?

Некоторые особенности ламп дневного света

Начнём со «смерти» такой лампы, которая потребует особого подхода к «похоронам». Наберите в поиске « демеркуризация утилизация ртуть мой город ». Найдите ближайшую точку, которая оказывает такую услугу. Таких точек много, одна-две обязательно окажутся неподалёку. Именно туда нужно сдать перегоревшую ЛЛ, а не выкидывать её в мусорный контейнер. Туда же нужно сдавать энергосберегающие лампы, ртутные, перегоревшие светодиоды и батарейки. Если конечно Вы, человек, который неравнодушен к приятности прогулок около своего дома.

Это один из недостатков, который вызывает замена люминесцентных ламп, но не самый сложный. Куда сложнее ситуация, когда после многолетней эксплуатации «прикипела» пятка лампы к цоколю. Да, ЛЛ служат много лет, и часто случается так, что цоколь просто обрастает отложениями (конденсат, пыль и т.д.), что не позволяет вынуть лампу, не разрушив колбу. Наша рекомендация – пригласите специалистов. Вы должны понимать, что внутри колбы пары ртути и других газов, которые тяжелее воздуха и от которых проветриванием не избавится.

Перепад напряжения выведет из строя примерно 30% ЛЛ. Это нужно иметь в виду, занимаясь обустройством освещения на даче, где падения напряжения не исключения, а скорее правило. Оставшиеся 70% ламп не выйдут из строя. Они просто станут работать с меньшим КПД.

Если подключить ЛЛ в сеть, не соблюдая принцип «фаза – нейтральный провод», то каждая вторая лампа будет мерцать. Даже при последовательном соединении. Это потому, что схема люминесцентной лампы содержит конденсатор, который будет сбрасывать избыток заряда при неверном присоединении балансов.

Даже при соблюдении любых схем подключения люминесцентных ламп, они всё равно будут мерцать и «моргать». Это не потому, что мы плохо разобрались в том, как всё сделать правильно. Это физика электрического пробоя, который не может быть постоянным. Он «искрит», поэтому искрит и лампа. Чем меньше работает балласт (конденсатор), тем лучше он держит уровень «пробоя», и тем меньше мерцание лампы.

И не забывайте время от времени вынимать лампу и нулевой шкуркой чистить контакты, это ахиллесова пята этих ламп – окисление контактов, что значительно влияет на её работоспособность.

В заключение хотелось бы отметить, что при всех своих недостатках, ЛЛ имеют множество преимуществ, от длительности сроков эксплуатации и правильного спектра, до безопасности и минимальной нагрузки на электропроводку квартиры. Поэтому, несмотря на завоевание рынка освещения светодиодными лампами , пока рановато списывать люминесцентные лампы в утиль. Полезнее научится использовать их грамотно и уместно.

Схема светильника.

Чтобы поддержать и стабилизировать процесс разряда используется схема светильника, содержащая балластное сопротивление, подключенное с люминесцентной лампой последовательно в виде дросселя или комбинации дросселя с конденсатором – пускорегулирующим аппаратом (ПРА).

Смотрите так же:  Электропроводка в панельном доме схема

Для простого расчета необходимого числа ламп воспользуйтесь Калькулятором расчета количества ламп.

Люминесцентная лампа работает в установившемся режиме при таком напряжении сети, которого не хватает для ее зажигания. Чтобы произошел пробой газового пространства, то есть образовался газовый заряд, необходимо подать на электроды импульс повышенного напряжения или осуществить предварительных разогрев, повысив тем самым эмиссию электронов. Для обеспечения и того и другого используется стартер, включенный параллельно лампе.

Схема светильника «а» показывает включение люминесцентной лампы с индуктивным балластом, схема «б» — с индуктивно-емкостным:

Чтобы понять необходимость использования балласта, необходимо знать о том, каким образом зажигается люминесцентная лампа. Стартер является миниатюрной лампочкой тлеющего разряда, имеющей неоновое наполнение и два биметаллических электрода. В нормальном положении они разомкнуты.

Когда на систему подается напряжение, электроды в стартере изгибаются и замыкаются на короткое время. Это приводит к тому, что ток в цепи электродов и стартера, который обычно ограничивается исключительно сопротивлением дросселя, увеличивается до двукратного или даже трехкратного от обычного рабочего значения, что приводит к быстрому разогреву электродов лампы. Одновременно с этим электроды стартера остывают и его цепь размыкается. Когда стартер разрывает цепь, в дросселе возникает повышенное напряжение, что приводит к разряду в газовой среде лампы и ее зажиганию.

Когда схема светильника срабатывает и люминесцентная лампа зажигается, уровень напряжения в ней составляет примерно половину от обычного сетевого. Такой же уровень напряжения удерживается и на стартере, а значит его не будет достаточно, чтобы осуществилось повторное замыкание. В связи с этим, когда лампа горит, стартер остается разомкнутым и не принимает участие в работе схемы.

Данная схема светильника показывает одноламповое стартерное включение лампы:

— С1, С2 и С3 – конденсаторы.

Подключенный параллельно стартеру конденсатор, как и те, которые подключены на входе схемы, нужны для того, чтобы снизить уровень радиопомех. Кроме того, конденсатор С1 используется для того, чтобы увеличить срок эксплуатации стартера и участвует в процессе зажигания люминесцентной лампы, снижая импульс напряжения, возникающего в стартере с 8 000 – 12 000 В до 600 – 1 500 В. Одновременно с этим он делает импульс более продолжительным, увеличивая тем самым его энергию.

Описанная стандартная схема светильника имеет один недостаток – низкий показатель cos фи, достигающий в среднем всего 0,5. Чтобы повысить этот показатель, используется индуктивно-емкостная схема или подключение конденсатора на вводе. Но в этом случае высшие гармонические составляющие в кривой тока, определяемые пускорегулирующим оборудованием и спецификой газового заряда, не дают поднять его выше 0,9-0,92. Двухламповые светильники имеют систему компенсации реактивной мощности. Ее работа состоит в следующем: одна лампа включается с индуктивным балластом, другая – с индуктивно-емкостным. Это позволяет увеличить показатель cos фи до 0,95. Еще одно преимущество использования этой схемы – возможность сглаживания пульсации светового потока ламп, причем сглаживание это значительное.

Использование пускорегулирующего аппарата с расщепленной фазой.

Для подключения люминесцентных ламп, имеющих мощность 40 и 80 Вт, наиболее часто используется импульсная двухламповая схема светильника, в которой используются балластные компенсированные устройства 2УБК-40/220 и 2УБК-80/220, работа которых основана на так называемой «расщепленной фазе. Эти комплексные электрические аппараты имеют дроссели, разрядные сопротивления и конденсаторы.

К одной из ламп последовательно подключается дроссель-индуктивное сопротивление, благодаря чему создается отставание тока от приложенного напряжения по фазе. Со второй лампой последовательно подключается не только дроссель, но и конденсатор. Его сопротивление превышает сопротивление дросселя в 2 раза, что способствует опережению тока. При этом показатель суммарного коэффициента мощности комплекта составляет в среднем 0,9-0,95. Конденсатор, подключенный с дросселем одной из ламп параллельно, подбирается специально таким образом, чтобы он способствовал сдвигу фаз между токами обеих ламп. Этот сдвиг должен обеспечивать существенное уменьшение глубины колебаний светового потока ламп, а значит схема светильника будет работать более эффективно.

Чтобы увеличить ток подогрева электродов используется компенсирующая катушка, подключенная последовательно с емкостью и отключаемая стартером. Это видно на монтажной схеме включения двухлампового аппарата 2УБК (пунктирная линия обозначает корпус пускорегулирующего аппарата (ПРА):

Л – люминесцентная лампа;

— r – разрядное сопротивление.

Схема схема светильника без использования стартера.

Стартерная система включения имеет несколько недостатков, среди которых наиболее существенные:

— вероятность возгорания при работе в аварийном режиме;

— значительный уровень шума, издаваемого при работе ПРА;

Это привело к необходимости разработки схем светильника, которые не предполагали бы использование стартера, но при этом оставались экономически выгодными и пригодными для применения в простых и недорогих установках. В первую очередь для надежной работы таких схем были разработаны и рекомендуются к применению лампы, на колбы которых нанесена токопроводящая полоса.

Среди таких схем наибольшей популярностью пользуются трансформаторные, обеспечивающие быстрый пуск ламп и использующее дроссель для обеспечения балластного сопротивления. За предварительный нагрев катодов в таких схемах отвечает автотрансформатор или накальный трансформатор.

Ниже показана одно- и двухламповая схема светильника:

Л – люминесцентная лампа;

НТ – накальный трансформатор.

На сегодняшний день расчеты позволили установить, что использование стартерных схем является более выгодным в экономичном плане, в частности из-за более низких потерь энергии (схема светильника без стартера — 35%, со стартером — примерно 20-25%). Именно поэтому они более распространены. В то же время схемы, в которых используются электромагнитные ПРА, вытесняются схемами, работающими с более экономичными и функциональными электронными ПРА.

Как работают стартеры люминесцентных ламп

Стартер представляет собой небольшую газоразряд­ную лампу тлеющего разряда. Стеклянная кол­ба наполняется инертным газом (неон или смесь гелий-водород) и помещается в металлический или пластмас­совый корпус, на верхней крышке которого имеется смо­тровое окно.

Схемы включения люминесцентных ламп: а-стартерная с дросселем; б—с лампой накаливания в качестве балласта; EL1 — лампа люминесцентная; КК — стартер; С — конденсатор; LL — дроссель; EL2 — лампа накаливания.

В некоторых конструкциях стартеров смотровое окно отсутствует. Стартер имеет два электро­да. Различают несимметричную и симметричную кон­струкции стартеров. В несимметричных стартерах один электрод неподвижный, а второй подвижный, изготовлен
из биметалла.

В настоящее время наибольшее распро­странение получила симметричная конструкция старте­ров, у которых оба электрода изготовляются из биметалла. Эта конструкция имеет ряд преимуществ по сравнению с несимметричной.

Напряжение зажигания в стартере тлеющего разряда выбирается таким образом, чтобы оно было меньше номинального напряжения сети, но больше рабочего на­пряжения, устанавливающегося на люми­несцентной лампе при ее горении.

Схема подключения двух люминесцентных ламп через стартер.

При включении схемы на на­пряжение сети оно полностью окажется приложенным к стартеру. Электроды стар­тера разомкнуты, и в нем возникает тлеющий разряд. В цепи будет проходить небольшой ток (20-50 мА). Этот ток на­гревает биметаллические электроды, и они, изгибаясь, замкнут цепь, и тлеющий разряд в стартере прекратится.

Через дроссель и последовательно соединенные катоды начнет проходить ток, который будет подогревать катоды лампы. Величина этого тока определяется индуктивным сопротивлением дросселя, выбираемым таким образом, что­бы ток предварительного подогрева като­дов в 1,5 2,1 раза превышал номинальный ток лампы. Длительность предваритель­ного подогрева катодов определяется вре­менем, в течение которого электроды стар­тера остаются замкнутыми.

Когда элек­троды стартера замкнуты, они остывают, и по прошествии определенного промежутка времени, называемого временем контактирования, электроды раз­мыкаются. Так как дроссель обладает большой индуктивностью, то в момент размыкания электродов стар­тера в дросселе возникает большой импульс напряже­ния, зажигающий лампу.

После зажигания лампы в цепи установится ток, рав­ный номинальному рабочему току лампы. Этот ток обу­словит такое падение напряжения на дросселе, что на­пряжение на лампе станет примерно равным половине номинального напряжения сети. Так как стартер вклю­чен параллельно лампе, то напряжение на нем будет равно напряжению на лампе и в связи с тем, что оно недостаточно для зажигания тлеющего разряда в стар­тере, его электроды останутся разомкнутыми при горе­нии лампы.

Стартеры тлеющего заряда.

Возможность зажигания лампы зависит от длитель­ности предварительного подогрева катодов и величины тока, проходящего через лампу в момент размыкания электродов стартера. Если разрыв цепи произойдет при малом значении тока, то величина индуктированной в дросселе э. д. с. и, следовательно, приложенного к лампе напряжения может оказаться недостаточной для ее зажигания, и лампа не зажжется. Поэтому, если при первой попытке стартер не зажжет лампу, он сразу же автоматически будет повторять описанный процесс до тех пор, пока не произойдет зажигание лампы. Со­гласно ГОСТ на стартеры зажигание лампы должно быть обеспечено за время до 10 сек.

Смотрите так же:  Фазы луны 3 ноября

Параллельно электродам стартера включен конден­сатор емкостью 0,003-0,1 мкф. Этот конденсатор обыч­но размещается в корпусе стартера. Конденсатор выпол­няет две функции: снижает уровень радиопомех, возни­кающих при контактировании электродов стартера и создаваемых лампой; с другой стороны, этот конденса­тор оказывает влияние на процессы зажигания лампы. Конденсатор уменьшает величину импульса напряже­ния, образуемого в момент размыкания электродов стар­тера, и увеличивает его длительность.

При отсутствии конденсатора напряжение на лампе очень быстро воз­растает, достигая нескольких тысяч вольт, но продолжи­тельность его действия очень небольшая. В этих усло­виях резко снижается надежность зажигания ламп. Кро­ме того, включение конденсатора параллельно электро­дам стартера уменьшает вероятность сваривания или, как говорят, залипания электродов, получающегося в ре­зультате образования электрической дуги в момент размыкания электродов. Конденсатор способствует быстрому гашению дуги.

Принципиальная схема включения люминесцентной лампы.

Применение конденсаторов в стартёре не обеспечи­вает полного подавления радиопомех, создаваемых лю­минесцентной лампой. Поэтому необходимо дополни­тельно на входе схемы установить два конденсатора емкостью не менее 0,008 мкф каждый, соединен­ных последовательно, и среднюю точку заземлить.
Одним из рекомендуемых способов снижения уровня радиопомех является применение дросселей с симметри­рованной обмоткой где обмотка дросселя разделе­на на две совершенно одинаковые части, имеющие рав­ное число витков, намотанных на один общий сердеч­ник.

Каждая часть дросселя соединена последовательно с одним из катодов лампы. При включении такого дрос­селя с лампой оба ее катода работают в одинаковых условиях, что снижает уровень радиопомех. В настоящее время, как правило, выпускаемые промышленностью дроссели изготовляются с симметрированными обмот­ками.

В схеме из-за наличия дросселя ток через лампу и напряжение сети не будут совпадать по фазе, т. е. они не будут одновременно достигать своих нулевых и максимальных значений. Как известно из теории переменного тока, в этом случае ток будет отставать по фазе от напряжения сети на некоторый угол, величина которого определяется соотношением индуктивного со­противления дросселя и активного сопротивления всей сети. Такие схемы называются отстающими.

В ряде случаев использования люминесцетных ламп требуется создавать такие условия, когда ток через лам­пу опережал бы по фазе напряжение сети. Такие схемы называются опережающими. Для выполнения этого условия последовательно с дросселем включается кон­денсатор, емкость которого рассчитывается таким обра­зом, чтобы его емкостное сопротивление было больше индуктивного сопротивления дросселя.

Устройство люминесцентной лампы.

В опережающем балласте в период зажигания лампы ток предварительного подогрева катодов имеет недостаточную величину. Для устранения этого явления необходимо на время зажигания лампы увеличить ток предварительного подогрева, что можно сделать, если частично компенсировать емкость индуктивностью. В цепь стартера включается дополнительная индуктивность в виде компенсирующей катушки.

При замыкании электродов стартера эта компенсирующая катушка включается последовательно с дросселем и конденсатором, общая индуктивность схемы возраста­ет, а вместе с ней увеличивается ток предварительного подогрева. После размыкания электродов стартера ком­пенсирующая катушка отключается, и в рабочем режиме лампы она не участвует. Индуктивность дополнительной катушки компенсирует емкость конденсатора, установ­ленного в стартере. Поэтому в схему вводится дополни­тельный конденсатор емкостью не менее 0,008 мкф, включаемый параллельно лампе и выполняющий в этом случае роль помехоподавляющего конденсатора.

Один из недостатков рассмотренных схем — низкий коэффициент мощности. Он составляет величину 0,5-0,6. Пускорегулирующие аппараты (ПРА), выполненные на основе этих схем, относятся к группе так называемых некомпенсированных аппаратов. При использовании та­ких аппаратов согласно правилам устройства электро­установок (ПУЭ) для повышения низкого коэффициента мощности необходимо предусматривать групповую ком­пенсацию коэффициента мощности, обеспечивающую до­ведение его для всей осветительной установки до вели­чины 0,9-0,95.

При невозможности или экономической неэффектив­ности применения групповой компенсации коэффициента мощности используют схемы, в которых дополнительно параллельно лампе включается конденсатор достаточной емкости, выбранный таким образом, чтобы коэффициент мощности схемы повысился до величины 0,85 -0,9 . ПРА, изготовленный по этой схеме, называют компенсированным. Расчеты показывают, что для ламп мощ­ностью 20 и 40 вт при напряжении 220 в емкость кон­денсатора составляет 3-5 мкф.

Основной недостаток стартерных схем зажигания — их низкая надежность, которая обусловлена ненадежно­стью работы стартера. Надежная работа стартера также зависит от уровня напряжения в питающей сети. Со сни­жением напряжения в питающей сети увеличивается время, необходимое для разогрева биметаллических элек­тродов, а при уменьшении напряжения более чем на 20% номинального стартер вообще не обеспечивает кон­тактирования электродов, и лампа не будет зажигаться. Значит, с уменьшением напряжения в питающей сети время зажигания лампы увеличивается.

Схема запуска сгоревшей люминисцентной лампы.

У люминесцентной лампы по мере старения наблю­дается увеличение ее рабочего напряжения, а у старте­ра, наоборот, с ростом срока службы напряжение зажи­гания тлеющего разряда уменьшается. В результате этого возможно, что при горящей лампе стартер начнет срабатывать и лампа гаснет.

При размыкании электродов стартера лампа вновь загорается и наблюдается мига­ние лампы. Такое мигание лампы, помимо вызываемого им неприятного зрительного ощущения, может привести к перегреву дросселя, выходу его из строя и порче лам­пы. Подобные же явления могут иметь место при ис­пользовании старых стартеров в сети с пониженным уровнем напряжения. При появлении миганий лампы необходимо заменить стартер на новый.

Стартеры имеют значительные разбросы времени кон­тактирования электродов, и оно очень часто недостаточ­но для надежного предварительного подогрева катодов ламп. В результате стартер зажигает лампу после не­скольких промежуточных попыток, что увеличивает дли­тельность переходных процессов, снижающих срок служ­бы ламп.

Общий недостаток всех одноламповых схем — невоз­можность уменьшить создаваемую одной люминесцент­ной лампой пульсацию светового потока. Поэтому такие схемы можно применять в помещениях, где устанавли­вается несколько ламп, а в случае их использования для группы ламп рекомендуется с целью уменьшения пульса­ции светового потока лампы включать в различные фазы трехфазной цепи. Необходимо стремиться к тому, чтобы освещенность в каждой точке создавалась не менее чем от двух-трех ламп, включенных в разные фазы сети.

Двухламповые схемы включения. Применение двух­ламповых схем включения дает возможность уменьшить пульсацию суммарного светового потока, так как пуль­сации светового потока каждой лампы происходят не одновременно, а с некоторым сдвигом по времени. По­этому суммарный световой поток двух ламп никогда не будет равен нулю, а колеблется около некоторого сред­него значения с частотой, меньшей, чем при одной лам­пе. Кроме того, эти схемы обеспечивают высокий коэф­фициент мощности комплекта лампа — ПРА.

Наибольшее распространение получила двухлампо­вая схема, называемая часто схемой с расщепленной фазой. Схема состоит из двух элементов-ветвей: отстающей и опережающей. В первой ветви ток отстает по фазе от напряжения на угол 60°, а во второй — опе­режает на угол 60°. Благодаря этому ток во внешней цепи будет почти совпадать по фазе с напряжением, и коэффициент мощности всей схемы составит величину 0.9-0.95.

Эту схему можно отнести к группе компенси­рованных, и по сравнению с одноламповой некомпенси­рованной схемой она обладает тем преимуществом, что не требуется принимать дополнительных мер для повы­шения коэффициента мощности. При изготовлении ПРА по этой схеме общий расход конструкционных материалов меньше, чем для двух и одноламповых аппаратов. В настоящее время выпускается большое количество различных типов аппаратов, выполненных по этой схеме.

Похожие статьи:

  • Плавный пуск на 220 вольт Устройство плавного пуска для электроинструмента Уважаемое сообщество ! Кто может рассказать особенности применения устройств плавного пуска при мощности 2 - 2.5 кВт. как правильно три конца к четырём подключть? с какими […]
  • Два параллельных длинных провода с током 6 а в каждом удалили друг от друга Сила Лоренца и сила Ампера Транскрипт 1 Вариант С какой силой действует магнитное поле индукцией 1Тл на отрезок прямого провода длиной 2м, расположенного перпендикулярно линиям индукции, если по проводу течет ток 1кА? (2кН) 2. Рамка […]
  • Соединение треугольником 220 Выбор схемы соединения фаз электродвигателя Для включения асинхронного электродвигателя в сеть его статорная обмотка должна быть соединена звездой или треугольником. Чтобы электродвигатель включить в сеть по схеме "звезда", нужно все […]
  • Реле тока рт-40 технические характеристики Реле тока РТ-40, РТ-140 Реле тока РТ-140 применяется в схемах релейной защиты и автоматики энергетических систем в качестве органа, реагирующего на повышение тока. Условия эксплуатации реле РТ40, РТ-140 Высота над уровнем моря до […]
  • Сопротивление константанового провода Для изготовления реостата израсходовано 2.25м константанового провода диаметром 0.1мм .определить сопротивление реостата ,если удельное сопротивление конст s=pi*D^2/4=3,14*0,01*10^-6/4=7,85*10^-9 […]
  • Термостойкие провода прка Термостойкий провод ПРКА Термостойкий монтажный провод ПРКА — провод с медной многопроволочной жилой, с изоляцией из кремний органической резины повышенной твердости. Провод ПРКА применяется в осветительных и тепловых приборах повышенной […]