Ток в 220 вольт параметры

Ток, напряжение, мощность: основные характеристики электричества

Электроэнергия давно используется человеком для удовлетворения своих потребностей, но она невидима, не воспринимается органами чувств, потому сложна для понимания. С целью упрощения объяснения электрических процессов их довольно часто сравнивают с гидравлическими характеристиками движущейся жидкости.

Например, к нам в квартиру приходит по проводам электрическая энергия от далеко расположенных генераторов и вода по трубе от создающего давление насоса. Однако, отключенный выключатель не позволяет светиться лампочкам, а закрытый водопроводный кран — литься воде из крана. Чтобы совершалась работа надо включить выключатель и открыть кран.

Направленный поток свободных электронов по проводам устремится к нити накала лампочки (пойдет электрический ток) , которая станет излучать свет. Вода, вытекающая из крана, будет стекать в раковину.

Эта аналогия позволяет также понимать количественные характеристики, ассоциировать силу тока со скоростью перемещения жидкости, оценивать другие параметры.

Напряжение электросети сравнивают с потенциалом энергии источника жидкости. К примеру, возрастание гидравлического давления насосом в трубе создаст большую скорость перемещения жидкости, а увеличение напряжения (или разности между потенциалами фазы — входящего провода и рабочего нуля — отходящего) усилит накал лампочки, силу ее излучения.

Сопротивление электрической схемы сопоставляют с силой торможения гидравлическому потоку. На скорость перемещения потока влияют:

засоренность и изменение сечения каналов. (В случае с водопроводным краном — положение регулирующего вентиля.)

На величину электрического сопротивления влияет несколько факторов:

строение вещества, определяющее наличие свободных электронов в проводнике и влияющее на удельное сопротивление;

площадь поперечного сечения и длина токовода;

Электрическую мощность тоже сравнивают с энергетическими возможностями потока в гидравлике и оценивают по выполненной работе в единицу времени. Мощность электроприбора выражается через потребляемый ток и подведенное напряжение (для цепей переменного и постоянного тока).

Все эти характеристики электроэнергии исследованы известными учеными, которые дали определения току, напряжению, мощности, сопротивлению и описали математическими методами взаимные связи между ними.

Рассмотрим несколько примеров их использования.

Пример №1. Как рассчитать сопротивление и мощность

Допустим, требуется подобрать токоограничивающий резистор для блока питания схемы освещения. Нам известно напряжение питания бортовой сети «U», равное 24 вольта и ток потребления «I» в 0,5 ампера, который нельзя превышать. По выражению (9) закона Ома вычислим сопротивление «R». R=24/0,5=48 Ом.

На первый взгляд номинал резистора определен. Однако, этого недостаточно. Для надежной работы семы требуется выполнить расчет мощности по току потребления.

Согласно действию закона Джоуля — Ленца активная мощность «Р» прямо пропорционально зависит от тока «I», проходящего через проводник, и приложенного напряжения «U». Эта взаимосвязь описана формулой (11) в приведенной таблице.

Рассчитываем: Р=24х0,5=12 Вт.

Это же значение получим, если воспользуемся формулами (10) или (12).

Проведенный расчет мощности резистора по току его потребления показывает, что в выбираемой схеме надо использовать сопротивление величиной 48 Ом и 12 Вт. Резистор меньшей мощности не выдержит приложенных нагрузок, будет греться и со временем сгорит.

Этим примером показана зависимость того, как на мощность потребителя влияют ток нагрузки и напряжение в сети.

Пример №2. Как рассчитать ток

Для группы розеток, предназначенных для питания бытовых электроприборов на кухне, необходимо подобрать защитный автоматический выключатель. Мощности приборов по паспортным данным составляют 2,0, 1,5 и 0,6 кВт.

Решение. В квартире используется однофазная переменная сеть 220 вольт. Общая мощность всех приборов, подключенных в работу одновременно, составит 2,0+1,5+0,6=4,1 кВт=4100 Вт.

По формуле (2) определим общий ток группы потребителей: 4100/220=18,64 А.

Ближайший по номиналу автоматический выключатель имеет величину срабатывания 20 ампер. Его и выбираем. Автомат меньшего значения на 16 А будет постоянно отключаться от перегрузки.

Отличия параметров электросхем на переменном токе

При анализе параметров электроприборов следует учитывать особенности их работы в цепях переменного тока, когда, благодаря влиянию промышленной частоты у конденсаторов возникают емкостные нагрузки (сдвигают вектор тока на 90 градусов вперед от вектора напряжения), а у обмоток катушек — индуктивные (ток на 90 градусов отстает от напряжения). В электротехнике их называют реактивными нагрузками . Они в комплексе создают реактивные потери мощности «Q», которые не выполняют полезной работы.

На активных нагрузках отсутствует сдвиг фазы между током и напряжением.

Таким образом, к активной величине мощности электроприбора в цепях переменного тока добавляется реактивная составляющая, за счет которой увеличивается общая мощность, которую принято называть полной и обозначать индексом «S».

Переменный синусоидальный ток в однофазной сети

Электрический ток и напряжение промышленной частоты меняются во времени по синусоидальному закону. Соответственно этому происходит изменение мощности. Определять их параметры в различные мгновенные моменты времени не имеет особого смысла. Поэтому выбирают суммарные (интегрирующие) значения за определенный временной промежуток, как правило — период колебания Т.

Знание отличий параметров цепей для переменного и постоянного тока позволяет правильно рассчитывать мощность через ток и напряжение в каждом конкретном случае.

В принципе они состоят из трех одинаковых однофазных цепей, сдвинутых друг относительно друга на комплексной плоскости на 120 градусов. Они немного отличаются нагрузками в каждой фазе, сдвигающими ток от напряжения на угол фи. За счет этой неравномерности создается ток I0 в нулевом проводе.

Напряжение в этой системе состоит из напряжений в фазах (220 В) и линейных (380 В).

Мощность прибора трехфазного тока, подключенного к схеме, складывается из составляющих в каждой фазе. Ее измеряют с помощью специальных приборов: ваттметров (активная составляющая) и варметров (реактивная). Рассчитать полную мощность потребления прибора трехфазного тока можно на основе замеров ваттметра и варметра с использованием формулы треугольника.

Существует еще косвенный метод измерения, основанный на использовании вольтметра и амперметра с последующими вычислениями полученных значений.

Также можно рассчитать общий ток потребления, зная величину полной мощности S. Для этого достаточно ее разделить на величину линейного напряжения.

Параметры электрической сети

Базовые параметры любой электрической сети — это напряжение, мощность, номинальная частота тока. Большая часть бытовых электросетей сейчас работает от генераторов переменного тока с выходным напряжением 380/220 Вольт. Если замерить эти значения в реальных домах, то можно заметить, что цифры постоянно изменяются в течение суток. Так, в ночное время, когда бытовыми приборами пользуется малое количество потребителей, напряжение существенно возрастает и, в зависимости от месторасположения населённого пункта, может достигать значения 240 В и даже выше. В то же время, в «час пик» активности потребителей тока, оно становится меньше, чем 220 В, до 210 и ниже.

Безусловно, такие колебания очень вредны для бытовых электроприборов, поскольку каждая техника может работать правильно в строго регламентированном диапазоне напряжений.

Другой важный параметр электросети — это частота тока. В большинстве стран, в том числе и в Российской Федерации, стандартным считается частота 50 Гц. В США, Канаде и некоторых других странах используется 60 Гц. На данный момент, считается, что для современного уровня технологического развития, наиболее эффективно было бы использовать электроэнергию, подаваемую с частотой 170-240 Гц. Однако, применение таких параметров тока потребует значительных расходов для реконструкции существующих электросетей. Номинальная частота в сети должна всё время оставаться постоянной, допускается лишь незначительное отклонение в пределах 0,4 Гц.

Мощность электросети важна при подключении новых потребителей, поскольку нельзя, чтобы совокупная потребляемая мощность превышала возможности источника ЭДС.

Общие параметры сети определяются совокупностью свойств всех элементов, входящих в неё. Каждый элемент, в свою очередь, обладает своим набором параметров, среди которых активное и реактивное сопротивление, активная и реактивная проводимость, коэффициент трансформации.

В современных бытовых трёхфазных сетях может возникнуть аварийный режим работы, когда одна из фаз оказывается замкнутой на землю. Такое может произойти, например, если провод оказался заземлён на металлическую конструкцию или в водный бассейн.

Параметры переменного напряжения

Как вы помните из предыдущей статьи, переменное напряжение — это напряжение, которое меняется со временем. Оно может меняться с каким-то периодом, а может быть хаотичным. Но не стоит также забывать, что и переменное напряжение обладает своими особенными параметрами. Часто между некоторыми понятиями возникает путаница. Попробуем разобрать что к чему в этой статье 😉

С чего же начнем? Думаю, правильнее было бы начать с напряжения 220 Вольт ;-). Очень много вопросов в рунете именно по напряжению «из розетки». Самый часто задаваемый вопрос выглядит так:

Смотрите так же:  Как проверить сетевой кабель

— Какой ток в розетке?

У нас в России в розетке переменный синусоидальный ток с частотой в 50 Герц, максимальной амплитудой приблизительно в 310 Вольт и действующим напряжением в 220 Вольт. Думаю, это будет самый развернутый ответ.

Итак, теперь давайте разбираться что к чему.

Как же выглядит этот «ток из розетки» на осциллографе? Ну примерно вот так:

По вертикали у нас одна клеточка равняется 100 Вольтам. Следовательно, максимальная амплитуда Umax будет равна где-то 330 Вольт

По идее должно быть 310 Вольт. Хотя оно и не удивительно. Напряжение в сети редко когда бывает стабильным. Все, конечно же, зависит от потребителей и трансформатора на электростанции, который их питает.

Раньше, когда я был еще салабоном, рядом с телевизором у нас стоял какой-то интересный девайс. На нем была шкала, и мы вечером подкручивали крутилку, чтобы шкала показывала ровненько 220 Вольт, иначе телевизор отказывался работать. С возрастом я потом понял, что это был ручной стабилизатор напряжения, так как именно вечером все соседи начинали «жрать» электричество и поэтому в сети было Вольт 200. Сейчас во всех ТВ и других бытовых приборах эти стабилизаторы встроены прямо внутри, и поэтому надобность в них резко отпала.

Далее второй вопрос, который очень часто можно встретить в рунете:

— Где в розетке плюс, а где минус?

Да, в розетке есть минус, но когда говорят о переменном токе 220 Вольт, этот минус называют нулем. Нуль он и в Африке нуль. Его можно даже потрогать руками (что крайне НЕ рекомендую) и вас даже не шибанет током. Короче говоря — это тупо проводок, который лежит без дела, пока не придет она… ФАЗА.

Этим странным словом называют второй проводок, который подходит к розетке. Фаза вкалывает по-черному, чтобы жить и работать на всю катушку. А нуль — он полный лентяй, но опять же фаза без нуля — ничто! Так что поэтому нуль и фаза подаются в связке друг с другом 😉

Какие- же процессы происходят на фазе?

В какой-то момент времени фаза бывает положительнее по напряжению, чем нуль. В какой-то момент времени она становится равна нулю. А в какой-то момент времени становится отрицательнее, чем нуль! Или, иначе говоря, нуль становится положительнее, чем фаза). Потом фаза снова становится равна нулю, а потом снова больше нуля и все это повторяется до тех пор, пока работает генератор на электростанции.

Хотите узнать, как все это выглядит на графике? Да пожалуйста 😉

Как я уже сказал, фаза без нуля — ничто! И если даже встать на диэлектрический коврик, то есть полностью изолировать себя от контакта с землей, то можно даже и потрогать фазу без вреда для здоровья. НО! не вздумайте проверять это дома! Так поступают только матерые электрики и у них имеются в наличии эти диэлектрические коврики и другие прибамбасы.

Но никогда, слышите, НИКОГДА! не дотрагивайтесь голыми руками сразу до двух проводов, тем более взяв их по одному в руки! Вы будете проводником, соединяющим цепь 220 Вольт. Или попросту говоря, вас ударит электрическим током. Думаю, некоторые до сих пор помнят эти «приятные» ощущения. А как бодрит сразу! Уууухх)))

Давайте разберем некоторые параметры переменного напряжения. Начнем со среднего значения напряжения.

Среднее значение переменного напряжения Uср — это грубо говоря площадь под осциллограммой относительно нуля за какой-то промежуток времени. Чтобы это понять, давайте рассмотрим вот такую осциллограмму. В данном случае одна клеточка по горизонтали — это 10 миллисекунд. Напряжение то же самое: из розетки.

Например, вот здесь, чему равняется среднее значение напряжения грубо говоря от нуля (блин, когда я успел сдвинуть график?) и до 20 миллисекунд?

В данном случае среднее значение напряжения равняется ноль Вольт. Почему так? Площади S1 и S2 равны. Но прикол в том, что площадь S2 идет со знаком «минус». А так как площади равны, то в сумме они дают ноль :S1+(-S2)=S1-S2=0. Для бесконечного по времени синусоидального сигнала среднее напряжения также равняется нулю.

То же самое касается и других сигналов, например, двуполярного меандра. Меандр — это прямоугольный сигнал, у которого длительности паузы и импульса равны. Можно сказать, что его среднее напряжение также равняется нулю.

Средним значением напряжения пользуются редко. Чаще всего используют средневыпрямленное значение напряжения Uср. выпр. То есть площадь сигнала, которая «пробивает пол» берут не с отрицательным знаком, а с положительным. То есть получается для нашего графика от нуля и до 20 миллисекунд

средневыпрямленное значение напряжения будет уже равняться не нулю, а S1+S2=2S1=2S2. Здесь мы суммируем площади, независимо от того, с каким они знаком.

На практике средневыпрямленное значение напряжения получить легко, использовав диодный мост. После выпрямления синусоидального сигнала, график будет выглядеть вот так:

Для того, чтобы примерно узнать, чему равняется средневыпрямленное напряжение, достаточно узнать максимальную амплитуду синусоидального сигнала Umax и сосчитать по формуле:

Чему будет равняться средневыпрямленное значения напряжения «из розетки»? Подставляем в формулу значение 310 Вольт и получаем примерно 198 Вольт.

Средневыпрямленное значение хоть и используется, но тоже редко.

Чаще всего используют среднеквадратичное значение напряжения или его еще по другому называют действующим. В литературе обозначается просто буквой U. Чтобы его вычислить, тут уже просто графиком не обойдешься. Оно рассчитывается сложнее. Среднеквадратичное значение — это значение постоянного напряжения, который, проходя через нагрузку (скажем, лампу накаливания), выделяет за тот же промежуток времени такое же количество мощности, какое выделит в этой нагрузке переменное напряжение. В английском языке среднеквадратичное напряжение обозначается так: RMS (rms) — root mean square. Более подробно про среднеквадратичное значение напряжения можно прочитать в этой статье.

Связь между амплитудным и среднеквадратическим значением устанавливается через коэффициент амплитуды Ka:

Вот некоторые значения коэффициента амплитуды Ka для некоторых сигналов переменного напряжения:

Более точные значения 1,41 и 1,73 — это √2 и √3 соответственно.

Ну все! Хватит нудной теории. У меня тоже мозг вскипел).

Для замера правильного среднеквадратического значения у нас должен быть мультиметр с логотипом T-RMS. RMS — как вы уже знаете — это среднеквадратическое значение. А что за буковка «T» впереди? Думаю, вы помните, как раньше была мода на одно словечко: «тру». «Она вся такая тру…», «Ты тру или не тру?» и тд. Тру (true) — с англ. правильный, верный.

Так вот, T-RMS расшифровывается как True RMS — «правильное среднеквадратическое значение». Мои токоизмерительные клещи могут замерять этот параметр без труда, так как на них есть логотип «T-RMS».

Проведем небольшой опыт. Давайте соберем вот такую схемку:

Выставим на моем китайском генераторе частоты треугольный сигнал с частотой, ну скажем, 100 Герц

А вот осциллограмма этого сигнала. Внизу, в красной рамке, можно посмотреть его параметры

И теперь вопрос: чему будет равно среднеквадратическое напряжение этого сигнала?

Так как один квадратик у нас равняется 1 Вольт (мы это видим внизу осциллограммы в красной рамке), то получается, что амплитуда Umax этого треугольного сигнала равняется 4 Вольта. Для того, чтобы рассчитать среднеквадратическое напряжение, мы воспользуемся формулой:

Итак, смотрим нашу табличку и находим интересующий нас сигнал:

Для нас не важно, пробивает ли сигнал «пол» или нет, главное, чтобы сохранялась форма сигнала. Видим, что наш коэффициент амплитуды Ka= 1,73.

Подставляем его в формулу и вычисляем среднеквадратическое значение нашего треугольного сигнала

Проверяем нашим прибором, так ли оно на самом деле?

Супер! И в правду Тrue RMS.

Замеряем это же самое напряжение с помощью моего китайского мультиметра

Он меня обманул :-(. Он умеет мерять только среднеквадратическое значение синусоидального сигнала, а у нас сигнал треугольный.

Самый интересный сигнал в плане расчетов — это двуполярный меандр, ну тот есть тот, который «пробивает пол».

Его амплитудное Umax, средневыпрямленное Uср.выпр. и среднеквадратичное напряжение U равняется одному и тому же значению. В данном случае это 1 Вольт.

Вот вам небольшая картинка, чтобы не путаться

Сред. — средневыпрямленное значение сигнала. Это и есть площадь под кривой

СКЗ — среднеквадратичное напряжение. Как мы видим, для синусоидальных сигналов, оно будет больше, чем средневыпрямленное.

Пик. — амплитудное значение сигнала

Пик-пик. — размах или двойная амплитаду. Или иначе, амплитуда от пика до пика.

Так что же все-таки показывает мультиметр при измерении переменного напряжения? Показывает он НЕ амплитудное, НЕ среднее и НЕ среднее выпрямленное напряжение, а среднее квадратическое! Про это не забываем 😉

Смотрите так же:  Подключение розетки фаркопа прадо 120

Про электричество понятным языком.

Сейчас я попытаюсь дать ответ на два вопроса, которые неизбежно возникают в постах, где упоминаются электросети.

Что убивает: напряжение или ток?

Почему в паре проводов один из них «фаза», а второй «ноль», если ток в сети переменный?

Объяснять буду просто, «на пальцах», чтобы все поняли, так что профессионалы, не пинайте за профанские аналогии.

Итак, на первый вопрос ответ короткий — убивает ток. Причем очень небольшой, порядка 300mA для постоянного тока и 100mA для переменного. Но сразу возникает вполне резонный вопрос: почему человека не убивают, скажем, блоки питания мобильных телефонов, или простые батарейки, ведь они выдают и более высокий ток. Дело в том, что в электрической цепи ток — величина производная. Чтобы определить его величину, нужно напряжение разделить на сопротивление. Электрическое сопротивление человеческой кожи довольно велико, так что при небольших напряжениях и ток получается очень незначительный. Сопротивление может меняться в больших пределах, это зависит от состояния кожи, влажности, температуры, и т.д. Оно может достигать десятков и сотен тысяч Ом. При анализе опасности поражения человека током, принимается условное значение в 1000 Ом. (на самом деле, среднее значение выше, но раз уж так заведено)

Теперь к практике. Берем большой и страшный аккумулятор от автомобиля, который может обеспечивать ток в сотни А (в тысячи раз выше смертельного!) и. хватаемся за контакты голыми руками. Умерли? Нет. Даже ничего не почувствовали. Потому что напряжение всего 12v, соответственно ток 12/1000=0,012А.

Вот так и получается, что убивает ток, но без напряжения он существовать не может.

А что же тогда за страшные цифры указываются на блоках питания и аккумуляторах? Это максимальный ток, который они способны обеспечить. Предположим, у нас компьютерный блок питания, обеспечивающий ток 10 А при напряжении 12 V. Если мы подключаем нагрузку 10 Ом, получаем ток 12/10=1.2 А. С нагрузкой 5 Ом, ток получается 2,4 А. Подключаем нагрузку 1 Ом (ток соответственно должен быть 12 А) и блок питания либо выключается, если там есть защитная схема, либо начинает перегреваться, просаживать напряжение и т.д. Потому что сопротивление нагрузки требует больший ток, чем питальник может обеспечить.

Теперь второй вопрос: почему в паре проводов один из них «фаза», а второй «ноль», если ток в сети переменный?

Для начала нужно в полной мере осмыслить, что такое напряжение. Напряжение — разность электрических потенциалов. Напряжение не может быть на одном проводе. Это разница, а разница может быть как минимум между двумя точками.

Допустим, у нас есть батарейка на 1,5 вольта. Это значит, что электрический потенциал одного контакта на 1,5V выше, чем у другого. Можно сказать, что у нее с одной стороны ноль, а с другой +1,5V. А можно сказать, что у нее со стороны плюса ноль, а со стороны минуса -1,5V. Это не важно, за ноль можно принять любую часть схемы. А теперь соединим последовательно две такие батарейки, на краях этой конструкции получается разница потенциалов 3V. Но, опять же, это не «абсолютное» напряжение (такового вообще быть не может) а именно напряжение одного полюса, относительно другого. И за ноль можно принять любую точку — как один из полюсов, так и контакт в центре между батарейками. Ноль это лишь условность — точка отсчета. Неизменно одно — там где электрический потенциал выше — там плюс.

Теперь вернемся к бытовой электрической сети. Один из ее проводников — ноль. Его электрический потенциал равен земле, это точка равновесия, от нее идут все отсчеты. А вот фаза — второй проводник, обладающий электрическим потенциалом, относительно этого нуля. Причем как положительным, так и отрицательным, в этом и заключается суть переменного тока. То есть, в определенный момент времени у нас фаза +220V, а ноль это ноль, получается, что фаза это плюс, а ноль — минус. Но проходит доля секунды и фаза становится -220V. То есть, потенциал фазы ниже нуля — фаза становится минусом, а ноль плюсом. Ноль остается на месте, а фаза 100 раз в секунду (50 полных циклов) меняет свое состояние [+220] [-220] [+220] [-220]. Так и получается, что в системе ноль и фаза постоянны, а минус и плюс меняются местами.

220 Вольт — именно такое напряжение в нашей домашней розетке. Что оно представляет из себя и откуда вообще берется? На эти и другие вопросы я постараюсь ответить в этой статье.

Думаю, вы слышали, что 220 Вольт — это переменный ток. Переменный образуется от слова «менять». В данном случае менять направление. В статье про напряжение мы с вами поверхностно рассмотрели, что из себя представляет переменный ток.

Где то далеко-далеко за тридевять земель в тридесятом царстве есть большой-большой механизм, чудо инженерной мысли… А зовется он генератор. И крутят его не люди, а разные ресурсы матушки Земли. Это может быть вода, уголь, и газ и даже урановая руда. И вот крутиться он, крутиться и вырабатывает электрический ток мощностью в МегаВатты, а некоторые даже и ГигаВатты! И преобразовывают ее разные электрические прибамбасы — трансформаторы и провода неимоверной толщины, висящие на больших гигантах-столбах.

Если все упростить и не вдаваться в подробности, то до наших домов доходит электрический ток переменным напряжением в 220 Вольт. Почему именно 220 Вольт? Да просто так повелось. Кстати, в Америке напряжение в розетке 110 Вольт.

К Вам 220 Вольт приходит по двум проводам. Иногда с ними бывает в связке еще и третий провод желто-зеленого цвета — это заземление.

По одному проводу течет фаза, по другому — ноль. Ноль — это провод для съема электрического тока с фазы. Ноль не представляет опасности для человека, но лучше не экспериментировать! В фазе напряжение очень быстро изменяется сначала от какого-то максимального значения (для 220 Вольт это значение равняется 310 Вольт), потом падает до нуля, и потом идет в минус и достигает значения в -310 Вольт и потом снова до нуля и снова до 310 Вольт. Итак за секунду он успевает проделать эту операцию 50 раз!

Почему все таки 310 Вольт? И откуда они взялись? Напряжение в розетке — это действующее напряжение.

и вычисляется оно по формуле:

UД — это действующее напряжение, В

Umax — максимальное напряжение, В

Знайте, что в электронике и в электрике если вам говорят, что напряжение переменного тока, допустим, 24 Вольта — это действующее напряжение. Максимальным значением напряжения переменного тока никто не пользуется.

Сколько ампер в розетке, и сколько вольт: какая сила тока и напряжение; для чего используется розетка трехфазная и однофазная?

Розетка – это электротехническое оснащение, без которого невозможно сегодня представить ни жилое, ни рабочее помещение. Поскольку техника используется разная, характеристики электрофурнитуры для нее тоже будут отличаться. Ни для кого не секрет, что мощность современных бытовых приборов несколько выше, чем 2-3 десятилетия назад. Именно поэтому были изменены и ГОСТы. Так, для советских разъемов стандартным было ограничение нагрузки 6А в сетях с напряжением 220в, сегодня же она увеличена до 16А. Для больших нагрузок подводятся трехфазные сети с напряжением 380в. Розетка 3 х фазная отличается по конструкции и способна выдерживать нагрузки до 32А.

Какая сила тока в розетке 220в и 380в, и для каких бытовых приборов необходимо 16, 25 и 32 ампера?

Сегодня каждый человек знает, сколько вольт в розетке. Стандартное напряжение в отечественных бытовых электросетях 220 вольт. В некоторых странах принят иной стандарт и там оно может быть 127 или 250 вольт. Большинство современной техники рассчитано именно на такие показатели. Однако помимо напряжения при монтаже проводки необходимо учитывать предполагаемую мощность подключаемых потребителей. Так на сегодняшний день в продаже представлены розетки 220 вольт с ограничением нагрузки 16А и 25А. Они используются для разных целей. Поскольку сила тока в розетке 220в прямо пропорциональна потребляемой мощности подключенного к ней оборудования.

К примеру, несколько десятилетий назад бытовой электротехники было не много, и особой мощностью она не отличалась, ограничение нагрузки на одну точку было 6А. В такой разъем можно подключить технику мощностью до 1,5кВт. Однако для современного дома этого уже слишком мало, так как даже стандартный электрочайник может потреблять до 2.5 кВт. Именно поэтому для современных разъемных соединений установлен стандарт ограничения нагрузки 16А, что позволяет безопасно подключать потребители мощностью до 3,5 кВт. В домах, где предполагается установка электроплит до 6кВт устанавливают так называемые силовые розетки 25А 220в. В целом это максимальные значения для бытовых электросетей.

Смотрите так же:  Электропроводка т-170

Для более мощной техники используют трехфазные сети с напряжением 380в и соответствующие розетки 380 вольт (до 32А). Такие разъемы обычны для мастерских, объектов общественного питания, но могут быть установлены и в частном доме, если все нагревательные приборы (в том числе и отопительные) работают от электросети. Однако в таких случаях требуется не только установка специальной электрофурнитуры, но и усиленная проводка.

Как найти фазу в розетке, и зачем нужны трехфазные; как измерить напряжение и определить силу тока

Нередко при внесении каких-либо изменений в электропроводку возникает необходимость определить фазный провод. Независимо от того, какое напряжение в розетке, по современным нормам они должны иметь цветную маркировку. Так желто-зеленый провод – это заземление, а синий или голубой – ноль. Соответственно остальные (один или три) – фаза, обычно фазовые провода бывают:

  • по нормам до 2011г – желтый, зеленый, красный;
  • после 2011г – коричневый, черный, серый.

Однако в некоторых сетях, монтировавшихся до 2011г, черный провод использовался для заземления. Кроме этого в однофазной проводке принято фазу подключать справа.

Если какая либо маркировка отсутствует, то пригодится пробник с неоновой лампой. При прикосновении к фазе индикатор загорится. Если используется пробник со светодиодом, при проверке нельзя касаться рукой металлической площадки на торце ручки. Чтобы определить, какой ток в розетке, необходим вольтметр. Он же пригодится и при определении фаз трехфазного подключения. Так между каждой из фаз и нолем будет 220в при линейном напряжении 380в и 127в — при линейном 220в (но последний разъем сегодня практически не встречается и не используется). В бытовых сетях трехфазное подключение может использоваться для кухонных печей с электродуховкой большой мощности. Клеммные щитки в некоторых моделях позволяют, таким образом, равномерно распределить нагрузку.

Подробнее о выборе и монтаже розетки

Если необходимая сила тока в розетке — 1 ампер, сколько вольт в ней должно быть?

Ампер и вольт — разные физические величины. Вольт (В) — это напряжение, которое необходимо для того, чтобы протолкнуть 1 Кл (кулон) электричества через сеть. Ампер (А) — сила электротока в проводнике, показывающая, сколько кулонов проходит через проводник за 1 секунду. Если сила тока в проводнике составляет 1 Ампер, это означает, что за 1 секунду он пропускает заряд электричества, равный 1 Кл.

Если силу тока умножить на напряжение сети, то в итоге мы получим показатель ее мощности. Например:

Напряжение обычной бытовой сети — 220 В

Мощность электросети=220 В*1 А=220 Вт (Ватт)

Поэтому вопрос о том, сколько вольт в ампере, звучит не совсем корректно. Правильная формулировка: «Какую мощность (в ватах) развивает электроприбор, потребляющий ток 1А?»

Ответ на него будет звучать так: «Электрический прибор, потребляющий ток в 1А, при подключении к бытовой электросети с напряжением 220В, будет развивать мощность 220 Вт».

Формулы для вычисления значения тока и мощности электролинии представлены на рисунке ниже.

Как выбрать розетку для дома?

Розетка — устройство для подключения бытовых приборов к электросети. Состоит она из корпуса и колодки, к контактам и клеммам которой подсоединяются токоподводящие провода.

Различают розетки бытовые и промышленные. По нормам среднее напряжение — 220В в розетке бытового назначения. Допустимая сила тока для такой розетки — 10А-16А, что подходит для подключения прибора мощностью 3520 Вт. При установке техники большей мощности контакты сильно нагреваются, и возрастает возможность возгорания. Для электроплиты мощностью 8 кВт обычная розетка, выдерживающая силу тока в 16 А, не подойдет.

Как узнать, сколько ампер в 220-вольтной розетке? Если разделить 8 кВт (8000Вт) на напряжение в сети (220В), то получим, что сила тока при подключении такой плиты будет свыше 36А. Это значит, что в характеристиках розетки должно быть указано, что она рассчитана на ток до 40А. Аналогично можно подобрать розетки и для других бытовых приборов.

Как самостоятельно измерить силу тока в розетке?

Сила тока в розетке 220В не измеряется, поскольку ее там нет. Розетка может быть только рассчитана на определенную силу тока, которая необходима для работы того или иного прибора.

Проверяется сила тока в определенном участке цепи. Используется для этого прибор амперметр. Измеряется сила тока в такой последовательности:

    1. Необходимо создать последовательную цепь, состоящую из бытового прибора, силу тока которого нужно измерить, и амперметра.
    2. При подключении амперметра следует соблюдать полярность — «+» измерительного прибора подключается к «+» источника тока, а «-» — к «-» источника тока.

Амперметр на электрической схеме измерения постоянного тока обозначен символом:

Как известно, существует зависимость силы тока от напряжения в сети. Для ее измерения используется закон Ома: I (сила тока в участке цепи) =U (напряжение на этом участке)/R (постоянный показатель сопротивления участка).

Как и чем измерить напряжение в розетке?

Напряжение в домашней электросети должно находиться в пределе 220В ±10. Максимальное напряжение в сети должно составлять не более 220+10%= 242В. Если в квартире тускло, или слишком ярко горят лампочки, либо ни быстро перегорают, часто выходят из строя электроприборы, рекомендует проверить напряжение в розетке. Для этого используются специальные приборы:

Перед использованием прибора необходимо проверить его изоляцию.

Как проверить напряжение в розетке? Для этого следует установить переключатель пределов измерения в необходимое положение (до 250 В — для измерения переменного напряжения).

Щупы прибора вставляют в гнезда розетки, табло прибора покажет напряжение в розетке.

Внимание: не следует касаться руками проводов и контактов, находящихся под напряжением.

Как правильно подключить трехфазную розетку?

При установке розетки на 380 вольт необходимо правильно подключить 4 или 5 проводов. Если перепутать местами ноль и фазу, это грозит не только поломкой электроприбора, но и возгоранием проводки.

Силовая линия для электропитания устройства состоит из трехфазной розетки и соответствующей ей вилки. Розетка 380 вольт подключается в следующей последовательности:

      1. На счетчике отключается напряжение, его отсутствие проверяется отверткой с индикатором.
      2. К контактам L1, L2, и L3 подключают в любой последовательности фазы A, B и C.
      3. Нулевая фаза подключается к контакту N.
      4. На контакт РЕ, который может обозначаться значком , подключается защитный заземляющий проводник от заземляющего контура.
      5. После подключения рекомендуется проверить индикатором отсутствие фазы на корпусе розетки, замерить напряжение на клеммнике (между фазами оно должно составлять 380 Вольт).

В каком случае устанавливается трехфазная розетка?

Большинство электрических приборов, используемых в доме, рассчитано на стандартное напряжение в сети (220В). Но есть приборы, электроплиты, производственное оборудование, мощные насосы, которые рассчитаны на большее напряжение в 380 В. Для такого оборудования устанавливаются трехфазные розетки.

Трехфазная розетка имеет четыре контакта — три из них (L1, L2 и L3) используются для подключения вилки, а четвертый (N) — нулевой, который применяется в качестве заземления.

Для подключения розетки 380В от щитка прокладывается четырехжильный кабель (3 фазы + ноль). Минимальная площадь среза токопроводящей жилы составляет 2,5 мм.кв. Оптимальным вариантом для подключения мощных машин является медный провод 3х4+2,5 (состоящий из трех жил сечением 4 мм. кв. и одной жилы, сечением 2,5 мм. кв.).

Трехфазная розетка должна иметь отдельный выключатель на электрощите, устанавливается она вблизи подключаемого прибора.

Похожие статьи:

  • Светодиоды как подключить к 220 вольт Как подключить светодиод? Хотя светодиоды (светики) используются в мире ещё с 60-х годов, вопрос о том как их правильно подключать, актуален и сегодня. Начнем с того, что все светодиоды работают исключительно от постоянного тока. Для них […]
  • Как поменять направление вращения электродвигателя 220 вольт Устройство и схема подключения коллекторного двигателя переменного тока Коллекторные двигатели переменного тока достаточно широко применяются как силовые агрегаты бытовой техники, ручного электроинструмента, электрооборудования […]
  • Если двигатель только на 380 можно ли его подключить на 220 Схема подключения трехфазного электродвигателя Здравствуйте. Информацию по этой теме трудно не найти, но я постараюсь сделать данную статью наиболее полной. Речь пойдет о такой теме, как схема подключения трехфазного двигателя на 220 […]
  • Как 220 вольт преобразовать в 110 Как преобразовать 110 вольт (60герц) в 220 (50 герц) Всегда на связи Диктор 2 153 сообщений Столкнулся я с такой проблемой, доча заказала на новый год деду морозу железную дорогу, а хорошие железные дороги в России не […]
  • Как подключить интернет через розетку Интернет через розетку Добрый день, Друзья! Приветствую вас на нашем обучающем Интернет-портале “С Компьютером на “ТЫ” . В предыдущей статье мы говорили о технологиях локальных сетей, разобрали наиболее популярные. Но иногда так бывает, […]
  • Заземление в электротехнике это Что такое сопротивление заземления Заземляющее устройство обладает сопротивлением. Сопротивление заземления состоит из сопротивления, которое оказывает земля проходящему току (сопротивление растеканию), сопротивления заземляющих проводов […]