Трехфазный синхронный двигатель переменного тока

Оглавление:

Принцип действия трехфазного синхронного двигателя, его пуск и характеристики, применение для регулирования коэффициента мощности.

Трехфазный синхронный двигатель может работать в качестве генератора и двигателя. Синхронный двигатель выполнен так же, как и синхронный генератор. Его обмотка якоря I подключена к источнику трехфазного переменного тока; в обмотку возбуждения 2 подается от постороннего источника постоянный ток. Благодаря взаимодействию вращающегося магнитного поля 4, созданного трехфазной обмоткой якоря, и поля, созданного обмоткой возбуждения, возникает электромагнитный момент М (рис. 291,б), приводящий ротор 3 во вращение. Однако в синхронном двигателе в отличие от асинхронного ротор будет разгоняться до частоты вращения n = n1, с которой вращается магнитное поле (до синхронной частоты вращения). Объяс-

Рис. 291. Электрическая (а) и электромагнитная (б) схемы синхронного электродвигателя

няется это тем, что ток в обмотку ротора подается от постороннего источника, а не индуцируется в нем магнитным полем статора и, следовательно, не зависит от частоты вращения вала двигателя. Характерной особенностью синхронного двигателя является постоянная частота вращения его ротора независимо от нагрузки. Электромагнитный момент в синхронном двигателе возникает в результате взаимодействия магнитного потока ротора (потока возбуждения Фв) с вращающимся магнитным полем, создаваемым трехфазным током, протекающим по обмотке якоря (потоком якоря Фв). При холостом ходе машины оси магнитных полей статора и ротора совпадают (рис. 292,а). Поэтому электромагнитные силы I, возникающие между «полюсами» статора и полюсами ротора, направлены радиально (рис. 292, б) и электромагнитный момент машины равен нулю. При работе машины в двигательном режиме (рис. 292, в и г) ее ротор под действием приложенного к валу внешнего нагрузочного момента Мвн смещается на некоторый угол 0 против направления вращения. В этом случае в результате электромагнитного взаимодействия между ротором и статором создаются электромагнитные силы I, направленные по направлению вращения, т. е. образуется вращающий электромагнитный момент М, который стремится преодолеть действие внешнего момента Мвн. Максимум моментаМmaxсоответствует углу ? = 90°, когда оси полюсов ротора расположены между осями «полюсов» статора.Если нагрузочный момент Мвн, приложенный к валу электродвигателя, станет больше Мmax, то двигатель под действием внешнего момента Мвн останавливается; при этом по обмотке якоря неподвижного двигателя будет протекать очень большой ток.

Синхронный двигатель не имеет начального пускового момента. Если подключить обмотку якоря к сети переменного тока, когда ротор неподвижен, а по обмотке возбуждения проходит постоянный ток, то за один период изменения тока электромагнитный момент будет дважды менять свое направление, т. е. средний момент за период будет равен нулю. Следовательно, для пуска в ход синхронного двигателя необходимо разогнать его ротор с помощью внешнего момента до частоты вращения, близкой к синхронной. Для этой цели применяют метод асинхронного пуска. Синхронный двигатель пускают в ход как асинхронный, для чего его снабжают специальной короткозамкнутой пусковой обмоткой 3 (рис. 293). В полюсные наконечники ротора 2 синхронного двигателя закладывают медные или латунные стержни, замкнутые накоротко двумя торцовыми кольцами. Пусковая обмотка выполнена подобно беличьей клетке асинхронной машины, но занимает лишь часть окружности ротора.

48. Синхронный компенсатор.

Синхронным компенсатором называется синхронный двигатель облегчённой конструкции, предназначенный для работы на холостом ходу.

Синхронные двигатели благодаря возбуждению постоянным током они могут работать с cos = 1 и не потребляют при этом реактивной мощности из сети, а при работе, с перевозбуждением отдают реактивную мощность в сеть. В результате улучшается коэффициент мощности сети и уменьшаются падение напряжения и потери в ней, а также повышается коэффициент мощности генераторов, работающих на электростанциях.

Синхронные компенсаторы предназначаются для компенсации коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок. Нормальным являемся перевозбужденный режим работы синхронного компенсатора, когда он отдает в сеть реактивную мощность

В связи с этим компенсаторы, как и служащие для этих же целей батареи конденсаторов, устанавливаемые на потребительских подстанциях, называют также генераторами реактивной мощности. Однако в периоды спада потребительских нагрузок (например, ночью) нередко возникает необходимость работы синхронных компенсаторов также в недовозбужденном режиме, когда они потребляют из сети индуктивный ток и реактивную мощность, так как в этих случаях напряжение сети стремится возрасти и для поддержания его на нормальном уровне необходимо загрузить сеть индуктивными токами, вызывающими в ней дополнительные падения напряжения.

Для этого каждый синхронный компенсатор снабжается автоматическим регулятором возбуждения или напряжения, который регулирует величину его тока возбуждения так, что напряжение на зажимах компенсатора остается постоянным.

Синхронные компенсаторы лишены приводных двигателей и с точки зрения режима своей работы в сущности являются синхронными двигателями, работающими на холостом ходу.

Для осуществления асинхронного пуска все синхронные компенсаторы снабжаются пусковыми обмотками в полюсных наконечниках или их полюсы делаются массивными. При этом используется способ прямого, а в необходимых случаях — способ реакторного пуска.

В некоторых случаях мощные компенсаторы пускаются в ход также с помощью пусковых фазных асинхронных двигателей, укрепляемых с ними на одном валу. Для синхронизации с сетью при этом обычно используется метод самосинхронизации.

Так как синхронные компенсаторы не развивают активной мощности, то вопрос о статической устойчивости работы для них теряет остроту. Поэтому они изготовляются с меньшим воздушным зазором, чем генераторы и двигатели, Уменьшение зазора позволяет облегчить обмотку возбуждения и удешевить машину.

Номинальная полная мощность синхронного компенсатора соответствует его работе с перевозбуждением.

Наибольшие значения тока и мощности в недовозбужденном режиме получаются при работе в реактивном режиме.

В большинстве случаев в недовозбужденном режиме требуются меньшие мощности, чем в перевозбужденном, но в некоторых случаях необходима большая мощность. Этого можно достигнуть увеличением зазора, однако это приводит к удорожанию машины, и поэтому в последнее время ставится вопрос об использовании режима с отрицательным током возбуждения. Поскольку синхронный компенсатор по активной мощности загружен только потерями, то, согласно он может работать устойчиво также с небольшим отрицательным возбуждением.

В ряде случаев в маловодные периоды для работы в режиме компенсаторов используются также генераторы гидроэлектростанций.

49. Устройство машины постоянного тока. Способы возбуждения. Принцип работы двигателя постоянного тока

Двигатель постоянного тока — электродвигатель, питание которого осуществляется постоянным током. Двигатель состоит из якорной обмотки (ротора с якорной обмоткой), статора, щёточного узла. ДПТ являются обратимыми электрическими машинами, то есть в определенных условиях способны работать как генераторы.

Статор. На статоре ДПТ располагаются в зависимости от конструкции: постоянные магниты обмотки возбуждения — катушки, наводящие магнитный поток возбуждения.

Двигатели постоянного тока различаются по способу коммутации обмоток возбуждения. Вид подключения обмоток возбуждения существенно влияет на тяговые и электрические характеристики эл.двигателя. Существуют схемы независимого, параллельного, последовательного и смешанного включения обмоток возбуждения.

Ротор. Ротор любого ДПТ состоит из многих катушек, на одну из которых подаётся питание в зависимости от угла поворота ротора относительно статора. Применение большого числа (несколько десятков) катушек необходимо для обеспечения оптимального взаимодействия между магнитными полями ротора и статора (то есть создания максимального момента на роторе).

Выводы всех катушек объединяются в коллекторный узел. Коллекторный узел обычно представляет собой кольцо из изолированных друг от друга пластин-контактов, расположенных по оси ротора. Существуют и другие конструкции коллекторного узла.

Щёточный (коллекторно-щёточный) узел. Щёточный узел необходим для подвода электроэнергии к катушкам на вращающемся роторе. Щётка — неподвижный контакт (обычно графитовый или медно-графитовый).

Щётки часто размыкают и замыкают пластины-контакты коллектора ротора, как следствие при работе ДПТ происходят переходные процессы в обмотках ротора. Эти процессы приводят к искрению на коллекторе, что значительно снижает ресурс ДПТ. Искрение уменьшают выбором взаимного положения полюсов ротора относительно статора(снижая ток коммутации), а также подключением внешних реактивных элементов (конденсаторов).

Смотрите так же:  Как мультиметром проверить провода

При больших токах в роторе ДПТ возникают мощные переходные процессы, в результате чего искрение может постоянно охватывать все пластины коллектора, независимо от положения щёток. Данное явление называется кольцевым искрением коллектора или «круговой огонь». Кольцевое искрение опасно тем, что одновременно выгорают все пластины коллектора и срок его службы значительно сокращается. Визуально кольцевое искрение проявляется в виде светящегося кольца около коллектора. Эффект кольцевого искрения коллектора не допустим, при проектировании приводов устанавливаются соответствующие ограничения на максимальные моменты (а следовательно и токи в роторе), развиваемые двигателем.

Принцип работы.Магнитное поле, создаваемое статором перпендикулярно магнитному полю ротора. Суммарное магнитное поле статора и ротора и создает вращающий момент ротора.

50. Пуск двигателя постоянного тока и регулирование частоты вращения.

При включении двигателя возникает большой пусковой ток, превышающий номинальный в 10 — 20 раз. Для ограничения пускового тока двигателей мощностью более 0,5 кВт последовательно с цепью якоря включают пусковой реостат.

Частота вращения якоря двигателя при любой схеме возбуждения определяется следующим выражением:n = (U — I(Rя — Rc))/СФ,

где Rc — сопротивление последовательной обмотки возбуждения (для двигателя параллельного возбуждения Rс = 0).

Это выражение показывает, что частота вращения двигателя зависит от напряжения сети, сопротивления цепи якоря и магнитного потока.

Частоту вращения регулируют путем изменения напряжения сети в том случае, когда источником электрической энергии двигателя является какой-либо генератор.

Для регулирования частоты вращения двигателя изменением сопротивления цепи якоря используют регулировочный реостат, включенный последовательно с якорем.

В отличие от пускового регулировочный реостат должен быть рассчитан на длительное прохождение тока. В сопротивлении регулировочного реостата происходит большая потеря энергии, вследствие чего резко уменьшается кпд двигателя.

Регулируют частоту вращения якоря двигателя изменением магнитного потока, который зависит от тока в обмотке возбуждения.

В двигателях параллельного и смешанного возбуждения для изменения тока включают регулировочный реостат, а в двигателях последовательного возбуждения для этой цели шунтируют обмотку возбуждения каким-либо регулируемым сопротивлением.

Последний способ регулирования частоты практически не создает дополнительных потерь и экономичен.

Дата добавления: 2015-04-16 ; просмотров: 137 ; Нарушение авторских прав

Большая Энциклопедия Нефти и Газа

Трехфазный синхронный электродвигатель

Трехфазный синхронный электродвигатель служит для преобразования электроэнергии переменного тока, подводимой со стороны статора, в механическую энергию, отдаваемую на вал и используемую для привода различных рабочих машин. [1]

Трехфазные синхронные электродвигатели широко применяются в промышленных установках для привода в движение исполнительных механизмов с неизменной скоростью вращения при продолжительном режиме работы. [2]

Трехфазный синхронный электродвигатель серии СДН типа СДН 14 — 49 — 6 имеет следующие номинальные данные: активную мощность на валу PZHOM ЮОО кВт, число пар полюсов р 3, отношение максимального момента к номинальному моменту Мтах / Л ( ио 2 0, частоту вращения пяоп 1000 об / мин, частоту питающего напряжения / 50 Гц. [3]

Автоматизация пуска трехфазного синхронного электродвигателя сводится в основном к установлению определенной очередности в управлении цепями статора и ротора. [4]

Приемник МЭ-30 представляет собой трехфазный синхронный электродвигатель , ротором которого является двухполюсный постоянный магнит, вращающий валик спидометра. [5]

Двигатели-генераторы состоят из трехфазных синхронных электродвигателей и генераторов постоянного тока с параллельным возбуждением. [6]

Питание цепи управления трехфазного синхронного электродвигателя предусмотрено от отдельной сети ЛИ — Л12, что дает возможность опробовать действие всех ее аппаратов без, включения силовой цепи. [7]

В каких приводах применяются трехфазные синхронные электродвигатели . [8]

На рис. 189 приведена схема прямого пуска трехфазного синхронного электродвигателя с постоянно подключенным возбудителем в функции тока статора. [9]

В нижеприведенной таблице указаны технические данные некоторых выпускаемых трехфазных синхронных электродвигателей . Пользуясь таблицей, определить для каждого из электродвигателей: 1) число полюсов; 2) потребляемую от сети активную мощность; 3) ток фазы статора при номинальной нагрузке; 4) ток, потребляемый при асинхронном пуске; 5) момент, развиваемый двигателем при номинальной нагрузке; 6) момент, развиваемый при пуске в ход; 7) момент, при превышении которого двигатель выпадает из синхронизма; 8) потери мощности при номинальной нагрузке; 9) реактивную мощность, отдаваемую двигателем. [10]

Для заряда и подзаряда крупных аккумуляторных батарей применяются двигатели-генераторы, состоящие из трехфазных синхронных электродвигателей и генераторов постоянного тока с параллельным возбуждением. [12]

Наружный цилиндр 2 из немагнитной, нержавеющей стали приводится во вращение через вал / от привода, состоящего из коробки перемены передач и трехфазного синхронного электродвигателя мощностью 0 25 л. с. Скорость вращения наружного цилиндра изменяется от 0 15 до 1500 об / мин. Внутренний пустотелый, плавающий цилиндр 3 установлен в конусных опорах и может поворачиваться вокруг оси с малым трением. Неподвижные пластины 5 прикреплены к корпусу вискозиметра. [13]

В отличие от единовременных капитальных затрат А / С представляет собой изменения в затратах потребителя, связанных с приобретением им для каждого изделия дополнительных комплектующих узлов, агрегируемых с базисной либо с новой машиной. Например, новый трехфазный синхронный электродвигатель типа ВДС 325 / 49 — 18, предназначенный для привода насосов, изготовлен для работы от сети напряжением 10 кВ непосредственно. [14]

В системе использован метод сельсинной дистанционной передачи сигналов. Сельсин — электрическая машина, сходная с трехфазным синхронным электродвигателем переменного тока . На каждом канале имеется два сельсина — сельсин-датчик и сельсин-приемник ( индикатора или регистратора), соединенные друг с другом так, что поворот на определенный угол ротора сельсин-датчика вызывает синхронный поворот ротора сельсин-приемника на тот же ( или пропорциональный) угол. [15]

Большая Энциклопедия Нефти и Газа

Трехфазный синхронный двигатель

Задача 13.4. Трехфазный синхронный двигатель работает от сети напряжением U 500 в. [16]

Так работают трехфазные синхронные двигатели . [17]

Как устроен трехфазный синхронный двигатель . [18]

Приемник представляет собой трехфазный синхронный двигатель с вращающимся двухполюсным постоянным магнитом. Обмотка статора — трехфазная катушечная с тремя явно выраженными полюсами, а ротор 7 электродвигателя — это постоянный двухполюсный магнит. Вращение ротора передается счетному механизму спидометра. [20]

Приемник — малый трехфазный синхронный двигатель с ротором в виде постоянного магнита, дополненного для улучшения пусковых характеристик гистерезисным диском, приводит во вращение обойму постоянных магнитов, между полюсами которых расположен увлекаемый диск. Для компенсации температурной погрешности на полюсах магнитов установлен термомагнитный шунт, а диск изготовлен из тройного медно-алюми-ние-марганцовистого сплава с малым температурным коэффициентом сопротивления. [21]

Статорные обмотки трехфазного синхронного двигателя MS ( рис. 5.4) подключены к выходным зажимам преобразователя частоты с непосредственной связью НПЧ. Этот преобразователь выполнен на трех реверсивных управляемых выпрямителях UZA, UZB и UZC, работающих в режиме управляемых источников тока. Контуры регулирования токов фаз статора настраиваются идентично друг другу, соответствуют функциональной схеме ( рис. 5.5) и на рис. 5.4 для краткости не указаны. Цепь ротора MS подключена к источнику постоянного нерегулируемого напряжения. [22]

Схема включения трехфазного синхронного двигателя обычного исполнения приведена на рис. 55.36, а. Статор синхронного двигателя СД выполняется аналогично статору асинхронного двигателя и имеет трехфазную обмотку, подключаемую к сети переменного тока. Ротор СД имеет обмотки возбуждения и пусковую в виде беличьей клетки, предназначенную для пуска синхронного двигателя. Конструктивно ротор синхронного двигателя может быть выполнен явнополюсным и не-явнополюсным в виде цилиндра. В качестве источника для питания обмотки возбуждения СД используется отдельный генератор постоянного тока ( возбудитель) В. Ток / в в обмотки возбуждения возбудителя ОВВ может регулироваться с помощью добавочного резистора RB. В регулируемом ЭП ротор синхронных двигателей может выполняться в виде постоянных магнитов или быть пассивным. [23]

Двигатель-генераторный агрегат состоит из трехфазного синхронного двигателя и генератора постоянного тока. [24]

Для вращения модулирующего диска использован трехфазный синхронный двигатель , построенный по принципу бесконтактного сельсина и имеющий скорость 3000 об / мин. Так как модулирующий диск, являющийся ротором двигателя, имеет 9 отверстий, то частота модуляции составляет 450 гц. [25]

Рассмотренное устройство поясняет принцип действия трехфазных синхронных двигателей Греческое слово синхронный означает одновременный. [26]

Рассмотренное устройство поясняет принцип действия трехфазных синхронных двигателей . Греческое слово синхронный означает одновременный. Этим словом подчеркивается одинаковая скорость вращающегося поля и ротора. [27]

На рис. 9 приводятся рабочие характеристики трехфазного синхронного двигателя с гармоническим ротором. [29]

В чем заключается главная отличительная особенность работы перевозбужденного трехфазного синхронного двигателя от недовоз-бужденного. [30]

Смотрите так же:  Монтаж сип провода одинцово

Синхронный двигатель с постоянными магнитами

Главное отличие между синхронным двигателем с постоянными магнитами (СДПМ) и асинхронным электродвигателем заключается в роторе. Проведенные исследования 1 показывают, что СДПМ имеет КПД примерно на 2% больше, чем высоко эффективный (IE3) асинхронный электродвигатель, при условии, что статор имеет одинаковую конструкцию, а для управления используется один и тот же частотный преобразователь. При этом синхронные электродвигатели с постоянными магнитами по сравнению с другими электродвигателями обладают лучшими показателями: мощность/объем, момент/инерция и др.

Конструкции и типы синхронного электродвигателя с постоянными магнитами

Синхронный электродвигатель с постоянными магнитами, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть.

Обычно ротор располагается внутри статора электродвигателя, также существуют конструкции с внешним ротором — электродвигатели обращенного типа.

Ротор состоит из постоянных магнитов. В качестве постоянных магнитов используются материалы с высокой коэрцитивной силой.

    По конструкции ротора синхронные двигатели делятся на:
  • электродвигатели с явно выраженными полюсами;
  • электродвигатели с неявно выраженными полюсами.

Электродвигатель с неявно выраженными полюсами имеет равную индуктивность по продольной и поперечной осям Ld = Lq, тогда как у электродвигателя с явно выраженными полюсами поперечная индуктивность не равна продольной Lq ≠ Ld.

    Также по конструкции ротора СДПМ делятся на:
  • синхронный двигатель c поверхностной установкой постоянных магнитов
    (англ. SPMSM — surface permanent magnet synchronous motor);
  • синхронный двигатель со встроенными (инкорпорированными) магнитами
    (англ. IPMSM — interior permanent magnet synchronous motor).

Статор состоит из корпуса и сердечника с обмоткой. Наиболее распространены конструкции с двух- и трехфазной обмоткой.

    В зависимости от конструкции статора синхронный двигатель с постоянными магнитами бывает:
  • с распределенной обмоткой;
  • с сосредоточенной обмоткой.

Распределенной называют такую обмотку, у которой число пазов на полюс и фазу Q = 2, 3. k.

Сосредоточенной называют такую обмотку, у которой число пазов на полюс и фазу Q = 1. При этом пазы расположены равномерно по окружности статора. Две катушки, образующие обмотку, можно соединить как последовательно, так и параллельно. Основной недостаток таких обмоток — невозможность влияния на форму кривой ЭДС [2].

    Форма обратной ЭДС электродвигателя может быть:
  • трапецеидальная;
  • синусоидальная.

Форма кривой ЭДС в проводнике определяется кривой распределения магнитной индукции в зазоре по окружности статора.

Известно, что магнитная индукция в зазоре под явно выраженным полюсом ротора имеет трапециидальную форму. Такую же форму имеет и наводимая в проводнике ЭДС. Если необходимо создать синусоидальную ЭДС, то полюсным наконечникам придают такую форму, при которой кривая распределения индукции была бы близка к синусоидальной. Этому способствуют скосы полюсных наконечников ротора [2].

Принцип работы синхронного двигателя

Принцип действия синхронного электродвигателя основан на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора. Концепция вращающегося магнитного поля статора синхронного электродвигателя такая же, как и у трехфазного асинхронного электродвигателя.

Принцип работы синхронного двигателя основан на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора.

Магнитное поле ротора, взаимодействуя с синхронным переменным током обмоток статора, согласно закону Ампера, создает крутящий момент, заставляя ротор вращаться (подробнее).

Постоянные магниты, расположенные на роторе СДПМ, создают постоянное магнитное поле. При синхронной скорости вращения ротора с полем статора, полюса ротора сцепляются с вращающимся магнитным полем статора. В связи с этим СДПМ не может сам запуститься при подключении его напрямую к сети трехфазного тока (частота тока в сети 50Гц).

Управление синхронным двигателем с постоянными магнитами

Для работы синхронного двигателя с постоянными магнитами обязательно требуется система управления, например, частотный преобразователь или сервопривод. При этом существует большое количество способов управления реализуемых системами контроля. Выбор оптимального способа управления, главным образом, зависит от задачи, которая ставится перед электроприводом. Основные методы управления синхронным электродвигателем с постоянными магнитами приведены в таблице ниже.

Для решения несложных задач обычно используется трапециидальное управление по датчикам Холла (например — компьютерные вентиляторы). Для решения задач, которые требуют максимальных характеристик от электропривода, обычно выбирается полеориентированное управление.

Трапециидальное управление

Одним из простейших методов управления синхронным двигателем с постоянными магнитами является — трапецеидальное управление. Трапециидальное управление применяется для управления СДПМ с трапециидальной обратной ЭДС. При этом этот метод позволяет также управлять СДПМ с синусоидальной обратной ЭДС, но тогда средний момент электропривода будет ниже на 5%, а пульсации момента составят 14% от максимального значения. Существует трапециидальное управление без обратной связи и с обратной связью по положению ротора.

Управление без обратной связи не оптимально и может привести к выходу СДПМ из синхронизма, т.е. к потери управляемости.

    Управление с обратной связью можно разделить на:
  • трапециидальное управление по датчику положения (обычно — по датчикам Холла);
  • трапециидальное управление без датчика (бездатчиковое трапециидальное управление).

В качестве датчика положения ротора при трапециидальном управлении трехфазного СДПМ обычно используются три датчика Холла встроенные в электродвигатель, которые позволяют определить угол с точностью ±30 градусов. При таком управление вектор тока статора принимает только шесть положений на один электрический период, в результате чего на выходе имеются пульсации момента.

Полеориентированное управление

Полеориентированное управление позволяет плавно, точно и независимо управлять скоростью и моментом бесщеточного электродвигателя. Для работы алгоритма полеориентированного управления требуется знать положение ротора бесщеточного электродвигателя.

    Существует два способа определения положения ротора:
  • по датчику положения;
  • без датчика — посредством вычисления угла системой управления в реальном времени на основе имеющейся информации.

Полеориентированное управление СДПМ по датчику положения

    В качестве датчика угла используются следующие типы датчиков:
  • индуктивные: синусно-косинусный вращающийся трансформатор (СКВТ), редуктосин, индуктосин и др.;
  • оптические;
  • магнитные: магниторезистивные датчики.

Полеориентированное управление СДПМ без датчика положения

Благодаря бурному развитию микропроцессоров с 1970-х годов начали разрабатываться бездатчиковые векторные методы управления бесщеточными электродвигателями переменного тока. Первые бездатчиковые методы определения угла были основаны на свойстве электродвигателя генерировать обратную ЭДС во время вращения. Обратная ЭДС двигателя содержит в себе информацию о положении ротора, поэтому вычислив величину обратной ЭДС в стационарной системе координат можно рассчитать положение ротора. Но, когда ротор не подвижен, обратная ЭДС отсутствует, а на низких оборотах обратная ЭДС имеет маленькую амплитуду, которую сложно отличить от шума, поэтому данный метод не подходит для определения положения ротора двигателя на низких оборотах.

    Существует два распространенных варианта запуска СДПМ:
  • запуск скалярным методом — запуск по заранее определенной характеристики зависимости напряжения от частоты. Но скалярное управление сильно ограничивает возможности системы управления и параметры электропривода в целом;
  • метод наложения высокочастотного сигнала – работает только с СДПМ у которого ротор имеет явно выраженные полюса.

На текущий момент бездатчиковое полеориентированное управление СДПМ во всем диапазоне скоростей возможно только для двигателей с ротором с явно выраженными полюсами.

Синхронный электродвигатель с обмоткой возбуждения

Конструкция синхронного электродвигателя с обмоткой возбуждения

Синхронный электродвигатель с обмоткой возбуждения, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть. Статор обычно имеет стандартную трехфазную обмотку, а ротор выполнен с обмоткой возбуждения. Обмотка возбуждения соединена с контактными кольцами к которым через щетки подходит питание.

Принцип работы

Постоянная механическая характеристика синхронного электродвигателя достигается за счет взаимодействия между постоянным и вращающимся магнитным полем. Ротор синхронного электродвигателя создает постоянное магнитное поле, а статор – вращающееся магнитное поле.

Работа синхронного электродвигателя основана на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора

Статор: вращающееся магнитное поле

На обмотки катушек статора подается трехфазное переменное напряжение. В результате создается вращающееся магнитное поле, которое вращается со скоростью пропорциональной частоте питающего напряжения. Подробнее о том, как посредством трехфазного напряжения питания образуется вращающееся магнитное поле можно прочитать в статье «Трехфазный асинхронный электродвигатель».

Ротор: постоянное магнитное поле

Обмотка ротора возбуждается источником постоянного тока через контактные кольца. Магнитное поле создаваемое вокруг ротора возбуждаемое постоянным током показано ниже. Очевидно, что ротор ведет себя как постоянный магнит, так как имеет такое же магнитное поле (в качестве альтернативы можно представить, что ротор сделан из постоянных магнитов). Рассмотрим взаимодействие ротора и вращающегося магнитного поля. Предположим вы придали ротору начальное вращение в том же направлении как у вращающегося магнитного поля. Противоположные полюса вращающегося магнитного поля и ротора будут притягиваться друг к другу и они будут сцепляться с помощью магнитных сил. Это значит, что ротор будет вращаться с той же скоростью, что и вращающееся магнитное поле, то есть ротор будет вращаться с синхронной скоростью.

Смотрите так же:  Клапан системы изменения геометрии впускного коллектора-n156 обрыв цепи

Синхронная скорость

Скорость с которой вращается магнитное поле может быть вычислена по следующему уравнению:

,

  • где Ns – частота вращения магнитного поля, об/мин,
  • f – частота тока статора, Гц,
  • p – количество пар полюсов.

Это значит, что скорость синхронного электродвигателя может очень точно контролироваться изменением частоты питающего тока. Таким образом эти электродвигатели подходят для высокоточных приложений.

Прямой запуск синхронного двигателя от электрической сети

Почему синхронные электродвигатели не запускаются от электрической сети?

Если ротор не имеет начального вращения, ситуация отличается от описанной выше. Северный полюс магнитного поля ротора будет притягиваться к южному полюсу вращающегося магнитного поля, и начнет двигаться в том же направлении. Но так как ротор имеет определенный момент инерции, его стартовая скорость будет очень низкой. За это время южный полюс вращающегося магнитного поля будет замещен северным полюсом. Таким образом появятся отталкивающие силы. В результате чего ротор начнет вращаться в обратную сторону. Таким образом ротор не сможет запуститься.

Демпферная обмотка — прямой запуск синхронного двигателя от электрической сети

Чтобы реализовать самозапуск синхронного электродвигателя без системы управления между наконечниками ротора размещается «беличья клетка», которая также называется демпферной обмоткой. При запуске электродвигателя катушки ротора не возбуждаются. Под действием вращающегося магнитного поля, индуцируется ток в витках «беличьей клетки» и ротор начинает вращаться подобно тому, как запускаются асинхронные двигатели.

Когда ротор достигает своей максимальной скорости, подается питание на обмотку возбуждения ротора. В результате, как говорилось ранее, полюса ротора сцепляются с полюсами вращающегося магнитного поля и ротор начинает вращаться с синхронной скоростью. При вращении ротора с синхронной скоростью, относительное движение между белечьей клеткой и вращающимся магнитным полем равно нулю. Это значит, что отсутствует ток в короткозамкнутых витках, а следовательно «беличья клетка» не оказывает воздействия на синхронную работу электродвигателя.

Выход из синхронизма

Синхронные электродвигатели имеют постоянную скорость независящую от нагрузки (при условии что нагрузка не превышает макимально допустимую). Если момент нагрузки больше, чем момент создаваемый самим электродвигателем, то он выйдет из синхронизма и остановиться. Низкое напряжение питания и низкое напряжение возбуждения также могут быть причинами выхода двигателя из синхронизма.

Синхронный компенсатор

Синхронные электродвигатели могут также использоваться для улучшения коэффициента мощности системы. Когда единственной целью использования синхронных электродвигателей является улучшение коэффициента мощности их называют синхронными компенсаторами. В таком случае вал электродвигателя не соединяется с механической нагрузкой и вращается свободно.

Синхронный электродвигатель с обмоткой возбуждения

Конструкция синхронного электродвигателя с обмоткой возбуждения

Синхронный электродвигатель с обмоткой возбуждения, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть. Статор обычно имеет стандартную трехфазную обмотку, а ротор выполнен с обмоткой возбуждения. Обмотка возбуждения соединена с контактными кольцами к которым через щетки подходит питание.

Принцип работы

Постоянная механическая характеристика синхронного электродвигателя достигается за счет взаимодействия между постоянным и вращающимся магнитным полем. Ротор синхронного электродвигателя создает постоянное магнитное поле, а статор – вращающееся магнитное поле.

Работа синхронного электродвигателя основана на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора

Статор: вращающееся магнитное поле

На обмотки катушек статора подается трехфазное переменное напряжение. В результате создается вращающееся магнитное поле, которое вращается со скоростью пропорциональной частоте питающего напряжения. Подробнее о том, как посредством трехфазного напряжения питания образуется вращающееся магнитное поле можно прочитать в статье «Трехфазный асинхронный электродвигатель».

Ротор: постоянное магнитное поле

Обмотка ротора возбуждается источником постоянного тока через контактные кольца. Магнитное поле создаваемое вокруг ротора возбуждаемое постоянным током показано ниже. Очевидно, что ротор ведет себя как постоянный магнит, так как имеет такое же магнитное поле (в качестве альтернативы можно представить, что ротор сделан из постоянных магнитов). Рассмотрим взаимодействие ротора и вращающегося магнитного поля. Предположим вы придали ротору начальное вращение в том же направлении как у вращающегося магнитного поля. Противоположные полюса вращающегося магнитного поля и ротора будут притягиваться друг к другу и они будут сцепляться с помощью магнитных сил. Это значит, что ротор будет вращаться с той же скоростью, что и вращающееся магнитное поле, то есть ротор будет вращаться с синхронной скоростью.

Синхронная скорость

Скорость с которой вращается магнитное поле может быть вычислена по следующему уравнению:

,

  • где Ns – частота вращения магнитного поля, об/мин,
  • f – частота тока статора, Гц,
  • p – количество пар полюсов.

Это значит, что скорость синхронного электродвигателя может очень точно контролироваться изменением частоты питающего тока. Таким образом эти электродвигатели подходят для высокоточных приложений.

Прямой запуск синхронного двигателя от электрической сети

Почему синхронные электродвигатели не запускаются от электрической сети?

Если ротор не имеет начального вращения, ситуация отличается от описанной выше. Северный полюс магнитного поля ротора будет притягиваться к южному полюсу вращающегося магнитного поля, и начнет двигаться в том же направлении. Но так как ротор имеет определенный момент инерции, его стартовая скорость будет очень низкой. За это время южный полюс вращающегося магнитного поля будет замещен северным полюсом. Таким образом появятся отталкивающие силы. В результате чего ротор начнет вращаться в обратную сторону. Таким образом ротор не сможет запуститься.

Демпферная обмотка — прямой запуск синхронного двигателя от электрической сети

Чтобы реализовать самозапуск синхронного электродвигателя без системы управления между наконечниками ротора размещается «беличья клетка», которая также называется демпферной обмоткой. При запуске электродвигателя катушки ротора не возбуждаются. Под действием вращающегося магнитного поля, индуцируется ток в витках «беличьей клетки» и ротор начинает вращаться подобно тому, как запускаются асинхронные двигатели.

Когда ротор достигает своей максимальной скорости, подается питание на обмотку возбуждения ротора. В результате, как говорилось ранее, полюса ротора сцепляются с полюсами вращающегося магнитного поля и ротор начинает вращаться с синхронной скоростью. При вращении ротора с синхронной скоростью, относительное движение между белечьей клеткой и вращающимся магнитным полем равно нулю. Это значит, что отсутствует ток в короткозамкнутых витках, а следовательно «беличья клетка» не оказывает воздействия на синхронную работу электродвигателя.

Выход из синхронизма

Синхронные электродвигатели имеют постоянную скорость независящую от нагрузки (при условии что нагрузка не превышает макимально допустимую). Если момент нагрузки больше, чем момент создаваемый самим электродвигателем, то он выйдет из синхронизма и остановиться. Низкое напряжение питания и низкое напряжение возбуждения также могут быть причинами выхода двигателя из синхронизма.

Синхронный компенсатор

Синхронные электродвигатели могут также использоваться для улучшения коэффициента мощности системы. Когда единственной целью использования синхронных электродвигателей является улучшение коэффициента мощности их называют синхронными компенсаторами. В таком случае вал электродвигателя не соединяется с механической нагрузкой и вращается свободно.

Похожие статьи:

  • Заземление этажного щита Этажный щиток. Заземление. дом 9-ти этажный, 7-ми подъездный, 87 года выпуска (сделан из блок-комнат). 2 ввода. от ТП идет два кабеля 4-х жильного. щитки на этажах на 4-ре квартиры. к этажным щиткам идет 4 кабеля: 3 фазы, ноль. в этижном […]
  • Магнитный пускатель 2 но 2 нз Магнитный пускатель EasyPact TVS Cерия пускателей на токи от 6 до 630 А EasyPact TVS –простота и гибкость Серия EasyPact TVS, включающая в себя контакторы, промежуточные реле, тепловые реле перегрузки и автоматические выключатели, […]
  • Провода трещат Почему ЛЭП трещат? 4 Причины. Причин появления треска на линиях электропередач может быть множество. Стоит разобраться в самых распространенных из них. Причина №1: атмосферное перенапряжение. Чаще всего такие явления возникают из-за […]
  • Как обозначается 3 фазы Как определить начала и концы фаз обмотки асинхронного двигателя Напряжения сети и схемы статорных обмоток электродвигателя Если в паспорте электродвигателя указано, например, 220/380 в, это означает, что электродвигатель может быть […]
  • Измерение сопротивления постоянному току электрооборудования Измерение сопротивления постоянному току - Испытание изоляции электрооборудования повышенным напряжением Основными методами измерения сопротивления постоянному току являются: косвенный метод; метод непосредственной оценки и мостовой […]
  • Конструкция провода сип-2 Конструкции изолированных проводов воздушных линий электропередачи Конструкции отечественных изолированных проводов являются аналогами проводов зарубежных производителей. Основные конструкции отечественных изолированных проводов приведены […]