Узо характеристика а

Выключатели автоматические УЗО-Д63

Назначение.

Двухполюсные автоматические выключатели, управляемые дифференциальным током со встроенной защитой от сверхтоков типа УЗО-Д63 устанавливаются в однофазных электрических сетях переменного тока частоты 50Гц с глухозаземленной нейтралью номинальным напряжением не выше 230В и номинальными токами до 40А для защиты людей от поражения электрическим током при неисправностях электрооборудования или при непреднамеренном контакте с открытыми проводящими частями электроустановок, для предотвращения возгораний и пожаров, возникающих вследствие протекания токов утечки и замыканий на землю, а также для защиты от перегрузки и короткого замыкания.

Двухполюсные автоматические выключатели с одним защищенным от сверхтоков полюсом относятся к классу устройств, функционально зависящих от напряжения сети (не размыкающихся автоматически в случае исчезновения напряжения), и предназначены для стационарной установки при неподвижной проводке.

Соответствует требованиям ГОСТ Р 51327.1-99 (МЭК61009-1-96).

Технические характеристики.

* — УЗО-Д63 работоспособно как при синусоидальных токах частоты 50 Гц, так и при пульсирующих постоянных дифференциальных токах.

Структура условного обозначения.

УЗО-Д63 2 Х С ХХ УЗЛ4 Х(ХХ)

УЗО-Д63 — тип выключателя;
2 — число полюсов;
Х — значение номинального отключающего дифференциального тока:

1 — 0,01А;
2 — 0,03А;
3 — 0,1А;
4 — 0,3А

С — характеристика срабатывания электромагнитного расцепителя;
ХХ — значение номинального тока:

6 — 6А;
10 — 10А;
16 — 16А;
20 — 20А;
25 — 25А;
32 — 32А;
40 — 40А.

УХЛ4 — климатическое исполнение и категория размещения;
Х(ХХ) — тип рабочей характеристики:

Пример: Двухполюсный АВДТ типа УЗО-Д63 с номинальным отключающим дифференциальным током 0,01А, номинальным током нагрузки 16 А, защитной характеристикой типа А:

  • выключатель УЗО-Д63 21С16-УХЛ4-А ТУ3422-046-05758109-2008

Принцип действия.

Ток утечки регистрируется дифференциальным трансформатором, протекая по первичным обмоткам, проходящим сквозь окно трансформатора тока. Во вторичной обмотке выделяется сигнал, пропорциональный току утечки. Электронный усилитель усиливает этот сигнал и открывает тиристор, который подает питание на катушку независимого расцепителя. Последний воздействует на механизм свободного расцепления и контакты выключателя размыкаются.

В основе действия защитного отключения, лежит принцип ограничения (за счет быстрого отключения) продолжительности протекания тока через тело человека при непреднамеренном прикосновении его к элементам электроустановки, находящимся под напряжением.

УЗО-Д63, реагирую на ток утечки на землю или защитный проводки, заблаговременно, до развития в короткое замыкание, отключает электроустановку от источника питания, предотвращая тем самым недопустимый нагрев проводников, искрение, возникновение дуги и возможное последующее возгорание.

Принцип действия АВДТ основан на сравнении токов в линейном L и нейтральном N полосах. В нормальном режиме работы, при отсутствии дифференциального тока (тока утечки), в силовой цепи по проводникам, проходящим сквозь окно магнитопровода трансформатора тока и являющимся его первичной обмоткой, протекает рабочий ток нагрузки. Равные токи во встречно включенных обмотках наводят в магнитном сердечнике трансформатора тока равные, но векторно противоположно направленные магнитные потоки. Результирующий магнитный поток равен нулю, и ток во вторичной обмотке дифференциального трансформатора также равен нулю.

При случайном прикосновении человека к открытым проводящим частям или пробое изоляции на корпус электроустановки по фазному проводнику кроме тока нагрузке протекает дополнительный ток являющийся для трансформатор тока дифференциальным. Если этот ток превышает значение уставки порогового устройства, последнее подает ток от источника питания на катушку электромагнита сброса, который сдергивает защелку механизма независимого расцепления выключателя, и электрическая цепь размыкается. Для осуществления периодического контроля исправности дифференциально автомата в электронный модуль встроена цепь тестирования. При нажатии на кнопку «ТЕСТ» искусственно создается отключающий дифференциальный ток. Немедленное срабатывание дифференциального автомата означает исправность всех его элементов.

Узо характеристика а

В процессе проектирования внутреннего электроснабжения коттеджей, магазинов , складов , административных зданий и т.д. необходимо обращать внимание не только на значение отключающего дифференциального тока устройства защитного отключения (УЗО), но и на вид тока, на которое оно реагирует. В данной статье мы рассмотрим основные типы УЗО по условиям срабатывания.

По условиям функционирования УЗО подразделяются на следующие типы: АС, А, В, S, G.

  • УЗО типа АС — устройство защитного отключения, реагирующее на переменный синусоидальный дифференциальный ток, возникающий внезапно, либо медленно возрастающий.
  • УЗО типа А — устройство защитного отключения, реагирующее на переменный синусоидальный дифференциальный ток и пульсирующий постоянный дифференциальный ток, возникающие внезапно, либо медленно возрастающие.
  • УЗО типа В — устройство защитного отключения, реагирующее на переменный, постоянный и выпрямленный дифференциальные токи.
  • УЗО типа S — устройство защитного отключения, селективное (с выдержкой времени отключения).
  • УЗО типа G — то же, что и типа S, но с меньшей выдержкой времени.

Принципиальное значение при рассмотрении конструкции УЗО имеет разделение устройств по способу технической реализации на следующие два типа:

УЗО, функционально не зависящие от напряжения питания (электромеханические). Источником энергии, необходимой для функционирования — выполнения защитных функций, включая операцию отключения, является для устройства сам сигнал — дифференциальный ток, на который оно реагирует;

УЗО, функционально зависящие от напряжения питания (электронные). Их механизм для выполнения операции отключения нуждается в энергии, получаемой либо от контролируемой сети, либо от внешнего источника. Применение устройств, функционально зависящих от напряжения питания, более ограничено в силу их меньшей надежности, подверженности воздействию внешних факторов и др. Однако основной причиной меньшего распространения таких устройств является их неработоспособность при часто встречающейся и наиболее опасной по условиям вероятности электропоражения неисправности электроустановки, а именно — при обрыве нулевого проводника в цепи до УЗО по направлению к источнику питания. В этом случае «электронное» УЗО, не имея питания, не функционирует, а на электроустановку по фазному проводнику выносится опасный для жизни человека потенциал.
В конструкции «электронных» УЗО, производимых в США, Японии, Южной Корее и в некоторых европейских странах, как правило, заложена функция отключения от сети защищаемой электроустановки при исчезновении напряжения питания. Эта функция конструктивно реализуется с помощью электромагнитного реле, работающего в режиме самоудерживания. Силовые контакты реле находятся во включенном положении только при протекании тока по его обмотке (аналогично магнитному пускателю).

При исчезновении напряжения на вводных зажимах устройства якорь реле отпадает, при этом силовые контакты размыкаются, защищаемая электроустановка обесточивается. Подобная конструкция УЗО обеспечивает гарантированную защиту от поражения человека в электроустановке и в случае обрыва нулевого проводника.

В США применяются в основном УЗО, встроенные в розеточные блоки. На одном объекте, например, небольшой квартире устанавливается по 10-15 устройств. Розетки, не оборудованные УЗО, обязательно запитываются шлейфом от розеточных блоков с УЗО

В европейских странах — Германии, Австрии, Франции электротехнические нормы допускают применение УЗО только первого типа — не зависящих от напряжения питания. УЗО второго типа разрешено применять в цепях, защищаемых электромеханическими УЗО, только в качестве дополнительной защиты для конечных потребителей, например, для электроинструмента, нестационарных электроприемников и т.д.
Электромеханические УЗО производят ведущие европейские фирмы — Siemens, ABB, GE, ETI, Hager, Legrand, EATON и др.

Согласно требованиям действующих нормативных документов в домах могут использоваться УЗО типа «А», которые реагируют как на переменные, так и на пульсирующие токи повреждений, или «АС», которые реагируют только на переменный ток утечки. Источником пульсирующего тока являются, например, стиральные машины с регуляторами скорости, регулируемые источники света, телевизоры, видеомагнитофоны, персональные компьютеры и др. Остальные типы УЗО менее распространены и применименяются в основном для обеспечения селективности срабатывания (УЗО с выдержкой времени).

Оставить комментарий или два

Пожалуйста, зарегистрируйтесь для комментирования.

УЗО. Устройство, принцип действия, схемы включения и характеристики УЗО.

Защитное отключение — электрозащитная мера, основанная на применении быстродействующих коммутационных аппаратов, отключающих питание электроустановки при возникновении в ней тока утечки на землю, или на защитный проводник, которое могло быть вызвано непреднамеренным включением человека в электрическую цепь.

Устройства, реализующие защитное отключение, согласно действующему ГОСТ Р 53312-2009 называются устройствами защитного отключения (УЗО).

В основе действия защитного отключения как электрозащитного средства лежит принцип ограничения (за счет быстрого отключения) продолжительности протекания тока через тело человека при непреднамеренном прикосновении его к элементам электроустановки, находящимся под напряжением.

На рисунке 1.1 представлены граничные кривые переменного тока промышленной частоты (сообщение Международной энергетической комиссии (МЭК) 479, глава 2, 3-е издание 1994 года), характеризующие воздействие электрического тока на человека в зависимости

от продолжительности времени его протекания. Необходимые пояснения к рисунку 1.1 приведены в таблице 1.1.

Обозначение интервала АС переменного тока

Предельное значение тока в интервале

до 0,5 мА (прямая а)

Обычно без ощутимого воздействия

от 0,5 мА до ломаной линии b

Смотрите так же:  Заземление сварочных трансформаторов

Обычно без вредного физиологического воздействия

от ломаной линии b до кривой c1

Обычно без органического повреждения. Возможна судорога мышц и проблемы с дыханием, если ток протекает дольше 2 с. Нарушение сердечной деятельности без фибрилляции сердечной мышцы наблюда­ется только при более продолжительном времени протекания и при более высоких значениях тока

Увеличивается вероятность возникновения таких опасных патологических явлений, как остановка дыхания и тяжелые ожоги

Вероятность возникновения фибрилляции сердечной мышцы 5 %

Вероятность возникновения фибрилляции сердечной мышцы приблизительно 50 %

Вероятность возникновения фибрилляции сердечной мышцы выше 50 %

Главным фактором, обуславливающим отсутствие смертельного исхода при поражении человека электрическим током, является малое время протекания электрического тока.

В специальной литературе приводится значение предельно допустимого произведения тока, протекающего по телу человека, и времени его протекания, равного 70 мА-с. При значениях сопротивления тела человека 2000 Ом и напряжения прикосновения 230 В величина тока, протекающего по телу, составит 230/2000 = 0,115 А. Время протекания тока в этом случае не должно превышать значения 0,6 с. В случае использования УЗО с номинальным отключающим дифференциальным током, равным lΔn=30 мА (рис. 1.1), значение времени отключения при касании человеком токоведущего проводника обычно находится в пределах от 10 до 30 мс, что гарантирует высокую степень безопасности.

ГОСТ Р 505713-94 (стандарт МЭК 60 364-4-41) устанавливает требования по обеспечению защиты от поражения электрическим током при эксплуатации зданий. Эта защита осуществляется применением мер, которые должны:

а) предотвратить возможность протекания тока через тело человека (изоляция токоведущих частей, уравнение потенциалов и другие);

б) ограничить величину тока, протекающего через тело человека, до безопасного значения, путем использования систем безопасного сверхнизкого напряжения;

в) быстро отключить неисправное электрооборудование от источника питания (предохранители, автоматические выключатели, УЗО).

В соответствии с 413-м разделом МЭК 60 364-4-41 мерами для обеспечения защиты от косвенного прикосновения являются:

— автоматическое отключение питания за определенное время (наибольшее время, в течение которого должно произойти автоматическое отключение источника питания, нормируется исходя из данных о воздействии электрического тока на организм человека (рис. 1.1));

— применение электрооборудования класса II или с равноценной изоляцией;

— применение изолирующих (непроводящих) помещений, зон, площадок;

— использование незаземленной системы местного уравнивания потенциалов;

— электрическое разделение цепей (с помощью разделяющего трансформатора или источника питания, равноценного ему по степени обеспечения электробезопасности).

Защита посредством автоматического отключения питания в установленное время может быть использована в системах заземления типов TN, TT и IT.

В соответствии с ГОСТ Р50571.2.94 (МЭК 364-3-93) в обозначении системы заземляющего устройства первая буква I или Т характеризует режим нейтрали трансформатора (генератора). Буква I означает, что сеть с изолированной нейтралью (нейтраль трансформатора изолирована от земли или связана с землей через очень большое сопротивление или разрядник). Буква Т означает, что нейтраль трансформатора имеет глухое заземление.

Вторая буква в обозначении системы характеризует тип соединения с землей нетоковедущих частей (корпуса) электроустановки, доступных прикосновению, которые могут оказаться случайно под напряжением. Буква Т означает прямое соединение открытых проводящих частей (корпусов) электроустановки с землей без связи их с нулевым многократно заземленным проводом, без связи их с нейтралью трансформатора.

Буква N указывает на присоединение нетоковедущих частей (корпусов) электроустановки с заземленной нейтралью (с нулевым многократно заземленным проводом) посредством PEN- или PE-проводников.

Последующие буквы характеризуют устройство нулевого защитного и нулевого рабочего проводников. Буква С означает, что функции нулевого защитного и нулевого рабочего проводников объединены в одном проводнике (PEN-проводнике), буква S — функции нулевого защитного и нулевого рабочего проводника обеспечиваются раздельными проводниками (табл. 1.2).

Условные графические изображения на электрических схемах нулевых рабочих и нулевых защитных проводников приведены в таблице 1.2.

Нулевой рабочий проводник (N)

Нулевой защитный проводник (РЕ)

Совмещенный нулевой рабочий и нулевой защитный проводник (РЕN)

Рис. 1.2. Система заземления TN-S в трехфазных сетях переменного тока

Система заземления и зануления TN-S имеет N-проводник и PE-проводник, которые работают раздельно по всей системе. В этой системе устройство защитного отключения может устанавливаться в любой точке сети. Однако при этом в трехфазных сетях переменного тока для реализации системы TN-S требуется во всей сети с глухо заземленной нейтралью с занулением от трансформатора (генератора) до электроприемника применять пятипроводные линии (рис. 1.2). Это делает систему TN-S более дорогой и сложной.

Проводник N, вводимый вовнутрь электроустановки, подключается к нейтральной точке нагрузки с целью выравнивания напряжения на фазах нагрузки и для канализации рабочего тока в нулевом проводе. РЕ-проводник подключается к корпусу нагрузки и является нулевым защитным проводником.

Система заземления и зануления TN-C-S является комбинацией систем заземления TN-C и TN-S, в которой PEN-проводник используется только в сети общего пользования. В какой-то точке сети PEN-проводник разделяется на два проводника РЕ-проводник и N-проводник. После точки разделения РЕ- и N-проводники соединять (объединять) запрещается, N-проводник изолируется от корпуса, при этом предусматриваются раздельные зажимы или шины для РЕ-проводника и N-проводника. Разделение PEN-проводника в системе TN-C-S обычно осуществляется на вводе в электроустановку. В точке разделения PEN-проводник заземляется на повторный контур заземления (рис. 1.3).

К PEN-проводнику предъявляются следующие требования в системе TN-C-S:

— сечение медного проводника должно быть не менее 10 мм2;

— сечение алюминиевого проводника должно быть не менее 16 мм2;

— электроустановки с PEN-проводником не должны быть оснащены УЗО, реагирующими на дифференциальный ток. Устройства защитного отключения могут быть установлены только после разделения PEN-проводника со стороны электроприемников.

Следует отметить, что система TN-C-S является наиболее перспективной для практического применения, так как она позволяет применить УЗО при использовании раздельных РЕ- и N-проводников, что дает возможность обеспечить более высокий уровень электробезопасности по сравнению с системой TN-С, а в существующих электрических сетях не требуется реконструкция.

В системе заземления TT нейтраль трансформатора или генератора глухо заземлена, а открытые токопроводящие части корпуса оборудования присоединены к заземлителю, независимому от заземлителя нейтрали источника питания (рис. 1.4). В данной системе заземляющие устройства выполняются без связи между собой, таких устройств может быть несколько. Эта система применяется в электросетях напряжением 110 кВ и выше, когда электроэнергия передается на большие расстояния по трехпроводной трехфазной линии, а заземляющие устройства выполняются «собственные» на каждой повышающей или понижающей подстанции.

Рис. 1.3. Система заземления TN-С и TN-C-S в трехфазных сетях переменного тока

В некоторых случаях по ГОСТ Р50669 рекомендуется использовать эту систему при проектировании, монтаже и эксплуатации электроустановок зданий и помещений из металла (киоски, павильоны и т. п.), где существует металлическая связь между источником и электроприемником. Это правило распространяется и на электроприемники передвижных установок от передвижных автономных источников питания, где имеется металлическая связь корпусов электрооборудования.

Защита от сверхтоков, используемая в сетях системы ТТ, TN и IT, в части обеспечения электробезопасности имеет ряд технических недостатков, например:

а) в ряде случаев приходится ограничивать мощность потребления электроприемников для того, чтобы обеспечить нужное сопротивление заземляющего устройства RA или полного сопротивления цепи замыкания ZA;

Рис. 1.4. Система заземления ТТв трехфазных сетях переменного тока

б) если значения ZA или RA в месте повреждения недостаточно малы, то на открытых проводящих частях может появиться опасное напряжение прикосновения. При небольшом значении тока повреждения время отключения велико. В течение этого времени на открытой проводящей части присутствует опасное напряжение прикосновения, а защитный проводник осуществляет вынос потенциала на другие открытые проводящие части;

в) в сетях системы TN-C на открытых проводящих частях появляется фазное напряжение в случаях:

— замены проводника PEN на фазный;

— обрыва проводника PEN;

г) при замене аппарата защиты на аппарат с большим номинальным током, выполненной неквалифицированным персоналом, время отключения поврежденного участка может превышать допустимое, либо отключение может вообще не произойти;

д) защита от непосредственного прикосновения к токоведущим частям не обеспечивается.

Кроме того, выполнение требований, обеспечивающих электробезопасность в сети системы ТТ посредством предохранителей или автоматических выключателей, практически не реализуемо. Поэтому в

таких сетях должны использоваться УЗО. В свою очередь, в сетях систем TN и IT с введением в действие стандарта МЭК 60 364-4-41 ужесточаются требования ко времени отключения защитными аппаратами поврежденного участка сети. Для случаев, когда реализация увеличения сечений проводников затруднена, стандарт четко определяет альтернативное решение — использование УЗО.

Устройство защитного отключения является превентивным элек- трозащитным мероприятием и в сочетании с современными системами заземления (TN-S, TN-C-S, ТТ) обеспечивает высокий уровень электробезопасности при эксплуатации электроустановок.

Принцип работы УЗО состоит в том, что оно постоянно контролирует входной сигнал и сравнивает его с наперед заданной величиной (уставкой). Если входной сигнал превышает уставку, то устройство срабатывает и отключает защищенную электроустановку от сети. В качестве входных сигналов устройств защитного отключения используют различные параметры электрических сетей, которые несут в себе информацию об условиях поражения человека электрическим током.

Смотрите так же:  Убрать провода в photoshop

Все УЗО по виду входного сигнала классифицируют на несколько типов (рис. 1.5).

Рис. 1.5. Классификация УЗО по виду входного сигнала

Кроме того, УЗО могут классифицироваться по другим критериям, например, по конструктивному исполнению.

Основными элементами любого устройства защитного отключения являются датчик, преобразователь и исполнительный орган.

Принцип действия УЗО дифференциального типа основан на применении электромагнитного векторного сумматора токов — дифференциального трансформатора тока. Сравнение текущих значений двух и более (в четырехполюсных УЗО — четырех) токов по амплитуде и фазе наиболее эффективно, т. е. с минимальной погрешностью, осуществляется электромагнитным путем — с помощью дифференциального трансформатора тока (рис. 1.6).

Конструктивно дифференциальные УЗО разделяются на два типа:

— электромеханические УЗО, функционально не зависящие от напряжения питания. Источником энергии, необходимой для функционирования таких УЗО — выполнения защитных функций, включая операцию отключения, является сам входной сигнал — дифференциальный ток, на который оно реагирует;

— электронные УЗО, функционально зависящие от напряжения питания. Их механизм для выполнения операции отключения нуждается в энергии, получаемой либо от контролируемой сети, либо от внешнего источника.

Применение устройств, функционально зависящих от напряжения питания, более ограничено в силу их меньшей надежности и подверженности воздействию внешних факторов. Однако основной причиной меньшего распространения таких устройств является их неработоспособность при часто встречающейся и наиболее опасной по условиям вероятности электропоражения неисправности электроустановки, а именно — при обрыве нулевого проводника в цепи до УЗО по направлению к источнику питания. В этом случае электронное УЗО, не имея питания, не функционирует, а на электроустановку по фазному проводнику выносится опасный для жизни человека потенциал.

К магнитопроводу трансформатора тока электромеханического УЗО предъявляются чрезвычайно высокие требования по качеству: высокая чувствительность, линейность характеристики намагничивания, температурная и временная стабильность и т. д. По этой причине для изготовления магнитопроводов трансформаторов тока, применяемых при производстве УЗО, используется специальное высококачественное аморфное (некристаллическое) железо.

Важнейшим функциональным блоком УЗО (рис. 1.6) является дифференциальный трансформатор тока 1. В абсолютном большинстве УЗО, производимых и эксплуатируемых в настоящее время во всем мире, в качестве датчика дифференциального тока используется именно трансформатор тока. В литературе по вопросам конструирования и применения УЗО этот трансформатор иногда называют трансформатором тока нулевой последовательности (ТТНП), хотя понятие «нулевая последовательность» применимо только к трехфазным цепям и используется при расчетах несимметричных режимов многофазных цепей.

Пусковой орган (пороговый элемент) 2 выполняется, как правило, на чувствительных магнитоэлектрических реле прямого действия или электронных компонентах. Исполнительный механизм 3 включает в себя силовую контактную группу с пружинным механизмом привода.

В нормальном режиме, при отсутствии дифференциального тока — тока утечки, в силовой цепи по проводникам, проходящим сквозь окно магнитопровода и образующим встречно включенные первичные обмотки дифференциального трансформатора тока 1, протекает рабочий ток нагрузки I1 = I2. Ток I1 протекает по направлению к нагрузке, I2 — от нагрузки.

Равные токи во встречно включенных обмотках наводят в магнитном сердечнике трансформатора тока, равные по значению, но противоположно направленные магнитные потоки Ф1 и Ф2. Результирующий магнитный поток оказывается равным нулю, следовательно, ток во вторичной обмотке дифференциального трансформатора также будет отсутствовать. При этом пусковой орган 2 находится в состоянии покоя.

При прикосновении человека к открытым токопроводящим частям или к корпусу электроприемника, который в результате пробоя изоляции оказался под напряжением, по фазному проводнику через УЗО, кроме тока нагрузки I1, потечет дополнительный ток ΔI (ток утечки), являющийся для трансформатора тока дифференциальным (разностным). Неравенство токов в первичных обмотках — I1 + ΔI в фазном проводнике и I2 = I1 в нулевом рабочем проводнике — вызывает небаланс магнитных потоков и, как следствие, возникновение во вторичной обмотке трансформированного дифференциального тока. Если этот ток превышает заданное значение тока порогового элемента пускового органа 2, последний срабатывает и воздействует на исполнительный механизм 3. Исполнительный механизм, обычно состоящий из пружинного привода, спускового механизма и группы силовых контактов, размыкает электрическую цепь. В результате защищаемая УЗО электроустановка обесточивается.

Рис. 1.6. Структурная схема и принцип действия УЗО

При прикосновении человека к открытым токопроводящим частям или к корпусу электроприемника, который в результате пробоя изоляции оказался под напряжением, по фазному проводнику через УЗО, кроме тока нагрузки I1, потечет дополнительный ток ΔI (ток утечки), являющийся для трансформатора тока дифференциальным (разностным). Неравенство токов в первичных обмотках — I1 + ΔI в фазном проводнике и I2 = I1 в нулевом рабочем проводнике — вызывает небаланс магнитных потоков и, как следствие, возникновение во вторичной обмотке трансформированного дифференциального тока. Если этот ток превышает заданное значение тока порогового элемента пускового органа 2, последний срабатывает и воздействует на исполнительный механизм 3. Исполнительный механизм, обычно состоящий из пружинного привода, спускового механизма и группы силовых контактов, размыкает электрическую цепь. В результате защищаемая УЗО электроустановка обесточивается.

Для осуществления периодического контроля исправности (работоспособности) УЗО предусмотрена цепь тестирования 4. При нажатии кнопки «Т» искусственно создается цепь протекания отключающего дифференциального тока. Срабатывание УЗО в этом случае означает, что устройство в целом исправно.

Основными параметрами, по которым подбирается то или иное УЗО, являются: номинальный ток нагрузки, т. е. рабочий ток электроустановки, который протекает через нормально замкнутые контакты УЗО в дежурном режиме; номинальное напряжение; уставка; время срабатывания устройства.

Номинальное напряжение (Un) — значение напряжения, установленное изготовителем УЗО, при котором устройство работоспособно. Обычно 220 или 380 В. Равенство напряжения в сети и номинального напряжения УЗО очень важно для электронных УЗО. От этого сильно зависит его работоспособность.

Номинальный ток (In) — максимальный ток, при котором УЗО сохраняет свою работоспособность продолжительное время. Номинальный ток УЗО выбирается из ряда: 10, 13, 16, 20, 25, 32, 40, 63, 80, 100, 125 А. Поскольку УЗО должно быть защищено последовательным защитным устройством (ПЗУ), номинальный ток нагрузки УЗО должен быть скоординирован с номинальным током ПЗУ. Номинальный ток нагрузки УЗО должен быть равен или на ступень выше номинального тока последовательного защитного устройства. Это означает, что, например, в цепь, защищаемую автоматическим выключателем с номинальным током нагрузки 25 А, должно быть установлено УЗО с номинальным током 40 А (см. табл. 1.3).

Номинальный ток нагрузки, А

Целесообразность такого требования можно объяснить простым примером. Если УЗО и автоматический выключатель имеют равные номинальные токи, то при протекании тока, превышающего номинальный, например, на 45 %, т. е. тока перегрузки, этот ток будет отключен автоматическим выключателем за время до одного часа. Это означает, что этот период времени УЗО будет перегружено. Номинальный не отключающий дифференциальный ток УЗО равен половине значения тока уставки. Это означает, что реальное значение дифференциального тока, при котором УЗО срабатывает, находится в диапазоне от половины до целого значения номинального отключающего тока. При этом каждое конкретное устройство имеет, как правило, определенное стабильное значение отключающего тока, находящееся в указанном диапазоне. Проектировщики и пользователи УЗО должны во избежание ложных отключений учитывать данное обстоятельство и сопоставлять реальное значение отключающего тока с «фоновым» током утечки в электроустановке.

Номинальный отключающий дифференциальный ток (Idn) — ток утечки. Основная характеристика УЗО. Данное значение показывает величину дифференциального тока, указанное при котором УЗО должно срабатывать при заданных условиях. Номинальный отключающий дифференциальный ток УЗО выбирается из следующего ряда: 6, 10, 30, 100, 300, 500 мА. Уставку УЗО для каждого конкретного случая применения выбирают с учетом следующих факторов:

— значения существующего в данной электроустановке суммарного (с учетом присоединяемых стационарных и переносных электроприемников) тока утечки на землю — так называемого «фонового тока утечки»;

— значения допустимого тока через человека на основе критериев электробезопасности;

— реального значения отключающего дифференциального тока

УЗО, которое в соответствии с требованиями ГОСТ Р 50807-94 находится в диапазоне (0,5-1) IΔn. Согласно требованиям ПУЭ

(п. 7.1.83), номинальный дифференциальный отключающий ток УЗО должен быть не менее чем в три раза больше суммарного тока утечки защищаемой цепи электроустановки (IΔ), т. е. IΔn > 3 ⋅ IΔ.

Суммарный ток утечки электроустановки замеряется специальными приборами, либо определяется расчетным путем. Рекомендуемые значения на основе критериев электробезопасности номинального отключающего дифференциального тока — IAn (уставки) УЗО для диапазона номинальных токов (16-80) А приведены в таблице 1.4.

Смотрите так же:  Провода с цветной изоляцией

Номинальный ток нагрузки в зоне защиты, А

IAn при работе в зоне защиты одиночного потребителя, мА

IAn при работе в зоне защиты группы потребителей, мА

IAn УЗО противопожарного назначения на ВРУ, ВРЩ, мА

При отсутствии фактических (замеренных) значений тока утечки в электроустановке ПУЭ ([1] п. 7.1.83) предписывают принимать ток утечки электроприемников из расчета 0,4 мА на 1 А тока нагрузки, а ток утечки цепи из расчета 10 мкА на 1 м длины фазного проводника.

В некоторых случаях для определенных потребителей значение уставки задается нормативными документами. В ГОСТ Р 50669-94 применительно к зданиям из металла или с металлическим каркасом задается значение уставки УЗО не выше 30 мА. Временные указания предписывают: для сантехнических кабин, ванных и душевых устанавливать УЗО с током срабатывания: 10 мА, если на них выделена отдельная линия. В остальных случаях (например, при использовании одной линии для сантехнической кабины, кухни и коридора) допускается использовать УЗО с уставкой 30 мА. В индивидуальных жилых домах для групповых цепей, питающих штепсельные розетки внутри дома, включая подвалы, встроенные и пристроенные гаражи, а также в групповых сетях, питающих ванные комнаты, душевые и сауны УЗО с уставкой 30 мА.

ПУЭ ([1] п. 7.1.84) рекомендуется для повышения уровня защиты от возгорания при замыканиях на заземленные части на вводе в квартиру, индивидуальный дом и тому подобное установка УЗО с током срабатывания до 300 мА.

В соответствии с ПУЭ ([1] п. 1.7.177) в животноводческих помещениях, в которых отсутствуют условия, требующие выполнения выравнивания потенциалов, должна быть выполнена защита при помощи

УЗО с номинальным отключающим дифференциальным током не менее 100 мА, устанавливаемых на вводном щитке.

Номинальный условный ток короткого замыкания (Inc) — характеристика, определяющая надежность и прочность устройства, качество исполнения его механизма и электрических соединений при протекании сверхтока (тока короткого замыкания в сети), значение этого параметра проверяется при сертификационных испытаниях. Еще этот параметр называют «стойкость к току короткого замыкания». Автомат, который защищает цепь, сработает на отключение, но это произойдет через 10 мс. За это время УЗО будет находиться под воздействием сверхтока, если оно сохраняет работоспособность, то его качество считается высоким. Значения номинального тока короткого замыкания стандартизованы и равны: 3000, 4500, 6000 и 10000 А. Минимально допустимое значение — 3000 А. Для УЗО типов S и G (с задержкой срабатывания) предъявляются повышенные требования к току короткого замыкания. Их устанавливают на вводе, и они находятся под воздействием сверхтока более продолжительное время.

Номинальная коммутационная способность (Im) — согласно требованиям, должна быть не менее, чем в 10 раз больше номинального тока или равна 500 А. Качественные устройства имеют, как правило, гораздо более высокую коммутационную способность — 1000, 1500 А. Такие устройства надежнее, и в аварийной ситуации, например, при коротком замыкании на землю, УЗО, опережая автомат защиты, гарантированно произведут отключение электроустановки.

Номинальное время отключения (tn) — промежуток времени между моментом внезапного возникновения отключающего дифференциального тока и моментом гашения дуги на всех полюсах. Стандартами установлено предельно допустимое время отключения УЗО — 0,3 с. В действительности современные качественные УЗО имеют быстродействие порядка 20-30 мс. Это означает, что УЗО — «быстрый» выключатель, поэтому на практике возможны ситуации, когда УЗО срабатывает раньше аппарата защиты и отключает как токи нагрузки, так и сверхтоки.

Дополнительные технические характеристики УЗО:

1. Показатель качества изготовления. Номинальный ток короткого замыкания (Inc) — один из основных параметров УЗО, характеризующий, прежде всего, качество изделия. Указанное заводом- изготовителем значение этого параметра проверяется при сертификационных испытаниях устройства. Смысл испытания заключается в определении термической и электродинамической стойкости изделия при протекании сверхтоков. При испытании на специальном стенде создается цепь из мощного источника и нагрузки, обеспечивающая протекание заданного сверхтока из ряда: 3; 4,5; 6; 10 кА. Испытательный ток не достигает заданного значения, поскольку отключается ранее последовательно включенным защитным аппаратом с нормированной уставкой. Как правило, для этой цели применяются плавкие вставки в виде серебряных проводников калиброванного сечения. Значение Inc, как важнейшего параметра УЗО, должно обязательно быть приведено на лицевой панели устройства, или в сопроводительной технической документации на УЗО. Для УЗО типов S и G предъявляются повышенные требования по данному параметру, поскольку предполагается, что, во-первых, УЗО этого типа устанавливаются на головном участке сети, где токи короткого замыкания, естественно, выше, во-вторых, такие устройства, имея задержку по срабатыванию, могут находиться под воздействием аварийных токов более продолжительное время.

2. Показатель качества изготовления. Номинальный дифференциальный ток короткого замыкания (IDc) — параметр аналогичен рассмотренному в Inc. Главным отличием является то, что сверхток протекает по одному проводнику УЗО и испытания проводятся при включении испытательного тока поочередно по отдельным полюсам УЗО.

3. Предельное значение неотключающего сверхтока (Inm) — данный параметр характеризует способность УЗО не реагировать на симметричные токи короткого замыкания и перегрузки и также является важным показателем качества устройства. Неправильно считать, что это ток, при котором УЗО должно производить отключение. Нормативы определяют минимальное значение неотключающего тока, равное шестикратному значению номинального тока нагрузки, т. е. Inm = 6-In. Максимальное значение неотключающего сверхтока не нормируется и может иметь значения, намного превышающие 6 In.

4. Номинальная включающая и отключающая способность (коммутационная способность) — (Im) — Коммутационная способность зависит от уровня технического исполнения устройства — качества силовых контактов, мощности пружинного привода, материала (пластмассовых или металлических деталей) и качества механизма, наличия дугогасящей камеры и др. Этот параметр в значительной степени определяет надежность УЗО. В некоторых аварийных режимах УЗО должно осуществить отключение сверхтоков, опережая автоматический выключатель, при этом оно должно сохранить свою работоспособность.

5. Номинальная включающая и отключающая способность по дифференциальному току (IDm) — данная характеристика аналогична рассмотренной выше Im с той разницей, что предполагается протекание дифференциального сверхтока, например, при коротком замыкании на корпус электроприемника в системе TN-C-S.

По условиям функционирования дифференциальные УЗО подразделяются на следующие типы: АС, А, В, S и G.

УЗО типа АС — устройство защитного отключения, реагирующее на переменный синусоидальный дифференциальный ток, возникающий внезапно, либо медленно возрастающий.

УЗО данного типа применяются в системах, где возможен синусоидальный ток утечки на землю. Они не чувствительны к импульсным дифференциальным токам с пиковым значением до 250А (форма волны 8/20 pS), которые могут возникнуть, например, при наложении импульсов перенапряжения при включении люминесцентных ламп, рентгеновского оборудования, систем обработки информации, тиристорных преобразователей.

Стандартные значения максимально допустимого времени отключения УЗО типа АС при любом номинальном токе нагрузки и заданных нормами значениях дифференциального тока не должны превышать приведенных в таблице 1.5.

Максимальное время отключения, установленное в таблице 1.5, распространяется также на УЗО типа А. При этом испытания УЗО типа А проводят при значениях токов iΔn, 2lΔn, 5lΔn и 500 А с коэффициентом 1,4 (при IΔn > 0,01 А) и с коэффициентом 2 (при IΔn Таблица 1.5 Нормируемое максимальное время отключения УЗО

Номинальный отключающий дифференциальный ток

Похожие статьи:

  • Иэк узо 25а ИЭК УЗО ВД1-63 2Р 25А 30мА Warning: Last items in stock! УЗО ИЭК - устройство защиты от дифференциального тока ВД1-63 быстродействующий электромеханический защитный выключатель, реагирующий на дифференциальный ток (ток утечки), без […]
  • Зачем ставить узо на вводе Мужской сайт Настоящий мужик должен быть хозяином в доме! УЗО на вводе УЗО на вводе Как выбрать УЗО Как и любое другое устройство, УЗО или как их еще называют выключатели дифференциального тока, имеет разные технические […]
  • Советские автоматы электрические Про электрические аппараты защиты для "чайников": автоматические выключатели Многие помнят советские автоматические выключатели - пробки. Они вворачивались вместо обычных керамических пробок в щиток электросчётчика. Это было […]
  • Узо авдт 63 Автоматические выключатели дифференциального тока АВДТ34 на токи 6-63А Автоматические выключатели дифференциального тока АВДТ34 предназначены для защиты человека от поражения электрическим током при повреждении изоляции электроустановок, […]
  • Магнитный пускатель пме схема Магнитный пускатель пме 211 схема подключения Выбор и схема подключения магнитного пускателя Магнитный пускатель является коммутационным аппаратом для включения нагрузки. Правильное подключение и выбор магнитного пускателя сэкономит […]
  • Узо f202-a УЗО ABB F200 (F202, F204) Компания АББ производит двух- и четырех полюсные автоматические выключатели, управляемые дифференциальным током, без встроенной защиты от сверх тока серий F 200 и FH 200, которые применяют соответственно в […]