Включить магнитный пускатель

Магнитный пускатель. Устройство, схемы включения, принцип действия, монтаж магнитных пускателей.

Пускатель (МЭС 441-14-38) — комбинация всех коммутационных устройств, необходимых для пуска и остановки двигателя, с защитой от перегрузки.

Электромагнитный пускатель (магнитный пускатель) — пускатель, у которого сила, необходимая для замыкания главных контактов, обеспечивается электромагнитом.

Магнитный пускатель (МП) — самый распространенный электрический аппарат для пуска электрических двигателей. Его основные достоинства: дистанционное управление пусками, простота схем, защита от снижения напряжения и перегрузки, приемлемые массогабаритные параметры, которые можно назвать внешними свойствами, поскольку они в определенной мере влияют на качество всей системы.

Внешние свойства МП постоянно совершенствуются (к примеру, в России недавно была запатентована схема МП с защитой от обрыва фазы сети). Крупные производители, представляющие эту продукцию в России: ОАО «Кашинский завод электроаппаратуры», 000 «Уралэлектроконтактор», ОАО «Новосибирский завод низковольтной аппаратуры», ОАО «Чебоксарский электроаппаратный завод» (Россия), EKFelectrotechnica (Россия), SchneiderElectric (Франция), GeneralElectric (США), Moeller (Германия), АВВ (Германия), Siemens (Германия), Legrand (Франция), ChintGroupCo (Китай) и др..

Магнитные пускатели выбирают в зависимости от условий окружающей среды и схемы управления по:

• току нагревательного элемента теплового реле;

• напряжению втягивающей катушки.

Uмп ≥ Uн уст; (1.1)
Iмп ≥ Iн уст, (1.2)

где Uмп, Iмп — соответственно номинальные значения напряжения (В) и тока (А) магнитного пускателя;

Uн уст, Iн уст — соответственно номинальные значения напряжения (В) и тока (А) электроустановки.

Тепловые реле проверяют на соответствие их номинального тока 1тр н, номинального тока нагревательного элемента Iнэ, верхнего Iуст max и нижнего Iуст min пределов регулирования тока уставки и выставленного тока уставки Iуст р номинальному току двигателя Iн дв:

Iтр н ≥ Iнэ ≥ Iн дв; (1.3)
Iуст max ≥ Iн дв ≥ Iуст min; (1.4)
Iуст р = Iн дв. (1.5)

Для электродвигателей с малым коэффициентом загрузки и рабочим током Iр дв в целях повышения надежности защиты используют соотношение:

Номинальный фазный ток электродвигателя Iн дв или по принятым в электрических машинах условным обозначениям – I1 ном ф определяют по формуле:

где Р2 ном — номинальная мощность электродвигателя, кВт;

U1л — номинальное линейное напряжение, В;

м — коэффициент полезного действия, о.е.;

cos ф — коэффициент мощности, о.е.

Наиболее общим и распространенным требованием, которое предъявляет потребитель при выборе МП, является величина коммутируемого тока, и по этому параметру МП указанных выше производителей можно разделить на несколько групп:

1) МП с токами (речь идет о предельных значениях токов) до 100 А, и сюда относятся МП серии ПМЛ на токи 10-80 А, серии ПМУ на токи 9-95 А;

2) МП с токами до 400 А, представителями которой являются МП серии ПМА на токи 40-160 А, серии ПМ12 на токи 10-250 А (Россия) и зарубежные магнитные пускатели ChintGroupCo серии NC1 и NC3 на токи 9-370 А;

3) МП с токами до 1000 А, представителями которой являются МП фирмы Moeller серии DIL на токи 20-855 А;

4) МП с токами выше 1000 А, к которым относятся МП GE Power Controls серии CL и CK на токи 25-1250 А и МП ЧЭАЗ-Benedikt на токи 10-1200 А.

Помимо прочего, для коммутации токов от 100 А до 1000 А российские производители предлагают контакторы серии КТ-6000, МК6 и вакуумные контакторы серии КВ1 и КТ12 для общепромышленного использования. В таблице 1.1 представлены показатели МП первой группы, как наиболее массовой.

Для приведенных на рисунке 1.1 МП, относящихся к 1, 2, 3 и 4 группам, соответствующие им показатели представлены в таблице 1.

Рис. 1.1. Магнитные пускатели 1-4 группы отечественных и импортных производителей

Анализ характеристик (см. табл. 1.1) показывает, что все МП имеют практически совпадающие параметры (отличия несущественны). При этом, как правило, при выборе МП ориентируются на два основополагающих показателя: режим работы и мощность нагрузки. Однако при жестких ограничениях на размеры, предпочтение следует отдать МП № 7 и № 5, габариты которых почти в полтора раза меньше, чем у остальных, при прочих равных параметрах.

По мощности, потребляемой катушками при включении, наиболее экономичным является МП № 6, при этом экономия составляет от 13 до 30 %. По общему ресурсу работы предпочтение следует отдать МП № 1, 2, 3, 6. По ориентировочной стоимости лидируют МП № 1 и № 2, так как стоимость остальных МП существенно выше.

Необходимо отметить, что на практике, особенно при использовании МП в системах АСУ, предпочтение отдается импортным аппаратам, т.к. их вспомогательные контакты обеспечивают так называемый «сухой контакт», используемый в устройствах микропроцессорной техники.

Помимо этого, к несомненным преимуществам импортных МП следует отнести:

— исполнение МП с катушками постоянного тока (исключение составляет ОАО «ВНИИР», которое поставляет пускатели ПМ12 с катушками постоянного тока);

Мощность дви­гателя, кВт

Мощность, потребляемая катушками при включении, ВА

Мощность, потребляемая катушками при удержании, ВА

Механическая износостойкость, частота включе­ний в час

Общий ресурс, млн. циклов

Коммутационная износостойкость, частота включе­ний в час

Время срабаты­вания: замыка­ние, мс

Время срабаты­вания: размыка­ние, мс

Минимальная вкл. способ­ность: напряже­ние В,/ток А

Габариты, ВхШхЦ мм

— очень широкий набор не только типовых аксессуаров для МП (вспомогательные контактные блоки, тепловые реле, ограничители перенапряжений), но и всевозможных приспособлений, значительно упрощающих монтаж и обслуживание аппаратов.

Учитывая тот факт, что бесперебойная работа электрического двигателя в значительной степени зависит от надежности МП, заслуживает отдельного рассмотрения такой важный показатель надежности, как коэффициент технической готовности. Этот показатель учитывает не только интенсивность отказов, но и время, требуемое для восстановления работоспособности МП, характеризуя вероятность того, что в нужный момент аппарат сработает, и система выполнит требуемые задачи. Для большинства МП, приведенных в таблице 1.1, производители не указывают в технических характеристиках изделия такие показатели, как среднее время наработки на отказ или частоту отказов. Однако накопленные статистические данные работы указанных выше серий МП позволяют получить следующие осредненные данные по коэффициенту готовности: для МП российского производства № 1, 3, 7 (табл. 1.1) коэффициент готовности равен 0,9905, для МП украинского производства № 2 — 0,9812, а для импортных МП № 4, 5, 6 — 0,9383. Таким образом, на объектах повышенной важности, где требуется высокая надежность, целесообразнее применять МП № 1,3,7.

С учетом исключительно широкого распространения МП большое значение приобретает снижение мощности, потребляемой ими. В электромагнитном пускателе мощность расходуется в электромагните и тепловом реле. Потери в электромагните составляют примерно 60 %, в тепловых реле — 40 %. С целью снижения потерь в электромагните применяется холоднокатаная сталь Э-310. МП серии ПМЛ и ПМ12 обладают коммутационной способностью до 20* 106 операций и частотой включений до 1200 в час (табл. 1.1). Выбор МП осуществляется по номинальному напряжению сети, номинальному напряжению питания катушек и номинальному коммутируемому току электроприемника.

Допускается МП выбирать по «величине пускателя»: 1 величина — 10 А, 4,5 кВт; 2 величина — 25 А, 11 кВт, 3 величина — 40 А, 18 кВт; 4 величина — 63 А, 30 кВт; 5 величина — 100 А, 45 кВт; 6 величина — 160 А, 75 кВт; 7 величина — 250 А, 110 кВт.

Это термин характеризует допустимый ток МП через силовые контакты при напряжении 380 Вольт и в режиме работы пускателя АС-3.

Категории применения МП: АС-1 — нагрузка МП активная или мало индуктивная; АС-3 — режим прямого пуска двигателя с короткозамкнутым ротором, отключение вращающегося двигателя; АС-4 — пуск электродвигателя с короткозамкнутым ротором, отключение неподвижных или медленно вращающихся двигателей, торможение противотоком.

На корпусах МП указываются все необходимые параметры. Это позволяет во время монтажа проверять соответствие монтируемого МП для конкретной схемы. У импортных МП указывается в качестве основного параметра не «величина пускателя», а мощность, на которую в различных условиях рассчитан МП. Чаще это оказывается удобней при выборе нужного МП.

Конструкция многих МП предусматривает возможность быстрого навесного монтажа на них: дополнительных нормально замкнутых или нормально разомкнутых контактов; реле задержек ON или OFF со временем задержки до 160 с; тепловых реле.

Электромагнитные пускатели серии ПМЛ предназначены для дистанционного пуска непосредственным подключением к сети, остановки и реверсирования трехфазных асинхронных электродвигателей с короткозамкнутым ротором при напряжении до 660В переменного тока частотой 50 Гц, а в исполнении с трехполюсными тепловыми реле серии РТЛ — для защиты управляемых электродвигателей от перегрузок недопустимой продолжительности и от токов, возникающих при обрыве одной из фаз. МП могут комплектоваться ограничителями перенапряжений типа ОПН. При такой комплектации МП пригодны для работы в системах управления с применением микропроцессорной техники при шунтировании включающей катушки помехоподавляющим устройством или при тиристорном управлении. Номинальное переменное напряжение включающих катушек: 24, 36, 40, 48, 110, 127, 220, 230, 240, 380, 400, 415, 500, 660В частоты 50 Гц и 110, 220, 380, 400, 415, 440В частоты 60 Гц. МП типа ПМЛ на токи 10. 63 А имеют прямоходовую магнитную систему Ш-образного типа. Контактная система расположена перед магнитной. Подвижная часть электромагнита составляет одно целое с траверсой, в которой предусмотрены подвижные контакты и их пружины. Тепловые реле серии РТЛ подсоединяются непосредственно к корпусам пускателей.

Структура маркировки МП типа ПМЛ.

ПМЛ-Х1 Х2 Х3 Х4 Х5 Х6 Х7 Х8:

ПМЛ — серия электромагнитных пускателей;

X1 — величина пускателя по номинальному току;

1 — 10 (16) А; 2- 25 А; 3 — 40 А; 4 — 63 (80) А; 5 — 125 А; 6 — 160 А; 7 — 250 А.

X2 — исполнение МП по назначению и наличию теплового реле:

1- нереверсивный МП без теплового реле;

2- нереверсивный МП с тепловым реле;

5 — реверсивный МП без теплового реле с механической блокировкой для степени защиты IP00, IP20 и с электрической и механической блокировками для степени защиты IP40, IP54;

6 — реверсивный МП с тепловым реле с электрической и механической блокировками;

7 — МП со схемой звезда-треугольник степени защиты IP54 (МП для трехфазного асинхронного двигателя, в пусковом положении которого обмотки статора соединяются звездой, а в рабочем положении — треугольником).

Смотрите так же:  Провода для усилителя acv

X3 — исполнение МП по степени защиты и наличию кнопок управления и сигнальной лампы:

0 — IP00; 1 — IP54 без кнопок; 2 — IP54 с кнопками «Пуск» и «Стоп»;

3 — IP54 с кнопками «Пуск», «Стоп» и сигнальной лампой (изготавливается только на напряжения 127, 220 и 380 В, 50 Гц);

4 — IP40 без кнопок; 5 — IP40 с кнопками «Пуск» и «Стоп»; 6 — IP20.

X4 — число и вид контактов вспомогательной цепи:

0 — 1з (на ток 10 и 25 А), 1з + 1р (на ток 40 и 63 А), переменный

1 — 1р (на ток 10 и 25 А), переменный ток;

2 — 1з (на ток 10, 25, 40 и 63 А), переменный ток;

5 — 1з (на 10 и 25 А), постоянный ток;

6 — 1р (на ток 10 и 25 А), постоянный ток).

X5 — сейсмостойкое исполнение МП (С);

X6 — исполнение МП с креплением на стандартные рейки Р2-1 и

X7 — климатическое исполнение (О) и категория размещения (2, 4); X8 — исполнение по коммутационной износостойкости (А, Б, В). МП серии ПМЛ (рис. 1.2) состоят из неподвижной части (рис. 1.2, поз. 2), закрепленной в основании, и подвижной части (рис. 1.2, поз. 3) с контактами для коммутации силовой цепи. Управление работой МП осуществляется с помощью электромагнитной катушки

управления (рис. 1.2, поз. 4), расположенной на среднем стержне неподвижной части Ш-образного магнитопровода.

Под воздействием электромагнитного поля втягивающей катушки (рис. 1.2, поз. 4), возникающего при протекании через нее тока, происходит смыкание двух частей магнитопровода (рис. 1.2, поз. 3, 4) с преодолением сопротивления возвратной пружины (рис. 1.2, поз. 9), а также пружин подвижных контактов. При этом контакты смыкаются и происходит коммутация устройства.

Рис. 1.2. Конструкция электромагнитного пускателя серии ПМЛ:

1 — основание из термостойкой пластмассы; 2 — неподвижная часть магнитопровода; 3 — подвижная часть магнитопровода; 4 — электромагнитная катушка управления; 5 — контактные зажимы; 6 — металлическая платформа (для пускателей номиналом свыше 25 А); 7 — траверса с подвижными контактами; 8 — крепежный винт; 9 — возвратная пружина; 10 — алюминиевые кольца; 11 — неподвижный контакт; 12 — зажим с насечкой для фиксации проводника

На МП можно установить 2-контактную или 4-контактную приставку с различным набором размыкающих и замыкающих контактов. Контактные приставки (КП) механически соединяются с МП со стороны входных зажимов (сверху) и фиксируются над траверсой МП. Способ крепления обеспечивает жесткую и надежную связь между КП и МП.

Контактная приставка серии ПКЛ (рис. 1.3) предназначена для увеличения количества вспомогательных контактов в схемах управления электроприводами до 440 В постоянного тока и до 660 В перемен

ного тока частотой 50 и 60 Гц. КП устанавливаются на МП серий ПМЛ-1000.. .ПМЛ-4000 и на промежуточные реле серии РПЛ. Структура условного обозначения КП серии ПКЛ ПКЛ-Х1 Х2 Х3 Х4 4 Х5:

ПКЛ — условное обозначение серии;

Х1 — количество замыкающих контактов (0; 1; 2; 4);

Х2 — количество размыкающих контактов (0; 1; 2; 4);

Х3 — исполнение приставки по степени защиты;

М — исполнение со степенью защиты IP20;

Отсутствие буквы означает приставку со степенью защиты IP00;

Рис. 1.3 Контактная приставка серии ПКЛ

Х4 — климатическое исполнение О, ОМ по ГОСТ 15150-69;

4 — категория размещения 4 по ГОСТ 15150-69;

Х5 — исполнение по коммутационной износостойкости в режиме нормальных коммутаций:

A — 3-106 циклов; Б — 1,6-106 циклов.

Реле промежуточные (РП) серии РПЛ (рис. 1.4) предназначены для применения в качестве комплектующих изделий в стационарных установках, в основном в схемах управления электроприводами при напряжении до 440 В постоянного тока и до 660 В переменного тока частотой 50 и 60 Гц. Реле пригодны для работы в системах управления с применением микропроцессорной техники при шунтировании втягивающей катушки ограничителем ОПН или при тиристорном управлении. При необходимости, на РП может быть установлена одна из приставок ПКЛ или ПВЛ. РП исполнения М допускают также установку одной или двух приставок боковых ПКБ. Номинальный ток контактов -16 А.

Структура условного обозначения РП серии РПЛ РПЛ-Х1 Х2 Х3 Х4 Х5 4 Х6:

РПЛ — условное обозначение серии;

Х1 — исполнение реле по роду тока цепи управления:

1 — с управлением на переменном токе;

Х2 — количество замыкающих контактов;

Х3 — количество размыкающих контактов;

Х4 — исполнение приставки по степени защиты:

М — исполнение со степенью защиты IP20;

Отсутствие буквы означает приставку со степенью защиты IP00;

Рис. 1.4. Реле РПЛ

Х5 — климатическое исполнение О, ОМ по ГОСТ 15150-69;

4 — категория размещения 4 по ГОСТ 15150-69;

Х6 — Исполнение по коммутационной износостойкости в режиме нормальных коммутаций: A — 3⋅10 6 циклов; Б — 1,6⋅10 6 циклов.

Приставка памяти ППЛ-04 превращает РП серии РПЛ в двустабильное. Она состоит из электромагнита и защелки, которая позволяет удерживать контактную систему реле во включенном положении после обесточивания обмотки реле. При подаче напряжения на обмотку приставки памяти происходит освобождение защелки, и РП возвращается в состояние, соответствующее начальному состоянию одностабильного РП.

Приставки выдержки времени пневматические серии ПВЛ (рис. 1.5) или просто «приставка» предназначены для создания выдержки времени при включении или отключении МП. Приставки могут устанавливаться только на реле РП серии РПЛ и на МП серии ПМЛ-1000. ПМЛ-4000.

Приставка устанавливается сверху МП, скользя по направляющим до упора, при этом защелка приставки своими выступами заходит за выступы на корпусе МП. Способ крепления обеспечивает жесткую и надежную связь между приставкой и МП.

Рис. 1.5. Приставка ПВЛ

Приставки серии ПВЛ выпускаются: с диапазоном выдержек времени от 0,1 до 15 с, от 0,1 до 30 с, от 10 до 100 с и от 10 до 180 с; со степенью защиты IP00 и IP20, в двух исполнениях по износостойкости: А — 3⋅10 6 циклов; Б — 1,6⋅10 6 циклов.

Для увеличения количества вспомогательных контактов цепи управления МП (при установленной приставке серии ПВЛ) применяется приставка бокового крепления серии ПКБ. Основные характеристики приставок серии ПВЛ приведены в таблице 1.2.

Реле серии РТЛ (далее «реле») предназначены для защиты трехфазных асинхронных двигателей с короткозамкнутым ротором от токов перегрузок недопустимой продолжительности, в том числе возникающих от асимметрии токов в фазах и от выпадения одной из фаз.

Магнитные пускатели: назначение, схема подключения

Вступление

Магнитные пускатели это электромеханическое устройство для включения/выключения электрической цепи электроустановки, в конструкции которой есть электродвигатель малых и средних мощностей.

Основная сфера применения магнитных пускателей это производство. Станки, промышленное оборудование, вентиляция цехов и зданий, лифты, всё это включается через магнитные пускатели. Пускатель может входить во встроенный электрический щит самого оборудования, либо монтироваться отдельно в распределительных щитах в щитовых комнатах. Кнопки управления пускателем (включить/выключить, пуск/стоп) могут выводиться дистанционно в любое удобное место.

Принцип работы магнитного пускателя

Основное назначение магнитного пускателя, замыкать (включать) или размыкать (выключать) электропитание электроустановки. Большая мощность электроустановки, является причиной больших пусковых токов. Большие токи не позволяют использовать простые механические коммутационные устройства (выключатели, рубильники) их заменяют магнитные пускатели.

Общий принцип работы магнитного пускателя не сложен. Есть электрическая цепь, которую нужно замкнуть или разомкнуть. В пускателе есть две группы контактов: одни контакты подвижные, вторые не подвижные. Подвижные контакты пускателя замыкаются при движении якоря к сердечнику. Сердечник запитывается отдельной цепью, а активация якоря происходит при помощи кнопки включения, установленной в цепи пускателя. Нажимаем кнопку «Пуск», якорь втягивается, питание подается на электроустановку. Нажимам кнопку «Стоп», питание с сердечника якоря снимается, оно размыкается и электроустановка обесточена.

Сразу стоит заметить, что сам по себе пускатель (контактор) не является функционально независимым устройством, например, как УЗО. Контактор, должен входить в схему, составными частями которой будут: сам контактор, спаренные кнопки управления (кнопка «Старт» и кнопка «Стоп»). Кроме этого, для защиты электродвигателя от перегрузок по току, в цепь пускателя устанавливается тепловое реле.

Магнитные пускатели — устройство

Магнитный пускатель состоит из следующих, основных частей:

  • Корпуса, крышки кожуха, дугогосительных камер, изоляционной траверсы;
  • Электромагнитной системы (катушка, сердечник, якорь);
  • Системы контактов (главные подвижные и неподвижные контакты, дополнительные блок контакты).

Схема включения магнитного пускателя

Давайте посмотрим на схему подключения магнитного пускателя с катушкой на 220 вольт с тепловым реле в схеме.

  • Фазный провод подключен к одному контакту кнопки «Пуск» (4);
  • Кнопка «Стоп» (5) закрыта, и фаза без препятствий проходит через неё;
  • Нулевой рабочий провод (N) проходит через тепловое реле (2) и подходит ко второму контакту магнитной катушки (6);
  • Жмем «Пуск» кнопку (4);
  • Тем самым, подаём фазный провод (L) на катушку (6);
  • Напряжение подается на сердечник, и электрический магнит пускателя, срабатывая, замыкает главные контакты пускателя (3);
  • Электропитание (электрический ток), попадает на двигатель.
  • Кнопка «Пуск» после нажатия отжимается, но блок контактов пускателя (7) остаются замкнутыми.
  • При нажатии кнопки «Стоп», цепь фаза-катушка-электродвигатель размыкается, и двигатель останавливается.

Искрение главных контактов гасится специальными дугогосителями расположенными в крышке кожухе, а контакты входа и выхода разделяются изоляционной траверсой.

Схема подключения магнитного пускателя на 380 Вольт

При подключении магнитного пускателя на 380 Вольт, схема подключения аналогична, только «ноль» меняем на вторую «фазу».

Комплектация магнитного пускателя тепловым реле

Современные магнитные пускатели, часто комплектуются тепловыми реле, которое защищает двигатель от перегрузки. Конструкция пускателя такова, что тепловое реле просто вставляется в фасадную часть пускателя.

Более того, современные пускатели могут обвешиваться со всех сторон дополнительными устройствами, защиты и контроля.

Пример пускателя с обвесами

Приведу пример пускателя или как его называют в компании ABB, контактора с дополнительными устройствами.

Смотрите так же:  Соединение кабеля сип к сетям

2- Ограничитель напряжения;

3- Блокировка реверсивная;

4- Контакт дополнительный боковой;

5- Контакт дополнительный фронтальный;

6- Контактный блок;

7-Таймер задержки пуска.

8-Тепловое реле перегрузки.

Отечественные модели популярных пускателей

В классификации пускателей наиболее популярны пускатели: ПМА, ПМЕ, ПМ 12. О них и как выбрать магнитный пускатель в следующих статьях.

Особенности современных магнитных пускателей и их применение

Рассматривать эту тему нужно с магнитных пускателей нужно с представителей советской эпохи. Яркие представители – это ПМЛ и подобные. Пускатели применяются для коммутации мощной нагрузки управляющим сигналом с током малой величины. Управляющий сигнал подаётся на катушку, которая создаёт магнитное поле. Оно в свою очередь создаёт усилие на магнитопроводе, который механически соединен с подвижными силовыми контактами и блок-контактами.

Магнитный пускатель можно разделить на две части: верхнюю и нижнюю. В нижней части расположена катушка и неподвижная часть магнитопровода, клеммы выводов катушки.

Верхняя часть пускателя содержит в себе: набор контактов, подвижную часть магнитопровода с возвратной пружиной. Она нужна для размыкания контактов, когда на катушку не подаётся напряжение, происходит возврат контактов в нормальные положения. На многих экземплярах в ней располагается дугогасительная камера. Подробнее — в статье про устройство и принцип действия магнитных пускателей.

Общий вид старого пускателя изображен выше. Ближе к зрителю расположены силовые контакты, они пронумерованы от 1 до 6. Дальше мы видим блок-контакты, они нужны для реализаций дополнительных функций схемы и самоподхвата.

Интересно:

Контакты пускателя замкнуты только тогда, когда на катушку подаётся напряжение. Пульты управления такими приборами обычно оборудованы кнопками без фиксации, это значит, что пускатель будет включен только тогда, когда вы удерживаете кнопку в нажатом положении.

Если для некоторых схем это хорошо, например, для тельфера, лебедки и других грузоподъёмных механизмов, то для двигателей работающих в длительном режиме это никак не подойдёт, представьте схему управления насосом, который должен работать без остановки.

Можно конечно использовать кнопки с фиксацией и тумблеры, но более наглядно использовать кнопки «Старт» и «Стоп» на пульте, поэтому используется схема с самоподхватом через блок-контакты.

Почему я начал статью о современных коммутационных приборов с рассмотрения классического образца? Всё просто – они еще в огромном количестве встречаются на предприятиях, промышленных объектах и прочем. К тому же имеют очень большой запас прочности, как в плане ресурса, так и в плане работы в перегруженных режимах.

Строение современных моделей магнитных пускателей

Давайте рассмотрим не частный случай, а современные приборы в общем виде. Отдельные моменты могут отличаться и зависеть от конкретной модели или производителя, поэтому постараюсь охватить как можно больший диапазон информации.

Начнем с общего вида современного пускателя.

На лицевой части перед нами находятся 4 пары контактов. Три из них с маркировкой типа 1L1 и 2T1 – это силовые контакты для подключения нагрузки к трёхфазной электросети. Контакты с пометкой «L» служат для подключения источника питания, а «T» — для подключения потребителя.

Вообще можно подключать сеть как с верхней стороны (L), так и с нижней (T). Но соблюдение маркировки и подключения описанного в первом способе сделает цепь более наглядной и упростит её обслуживания другим электромонтерам, которые будут с ней работать кроме вас. Принято заводить питание с верхней стороны.

Пара контактов 13NO-14NO – это контакты для самоподхвата, или блок-контакты. Их назначение описано выше.

Интересно:

Главным отличием у современных контакторов является маркировка клемм, нужно запомнить, что клеммы с маркировкой «L» и «T» служат для подключения силовых линий – питания и нагрузки. Контакты с маркировкой NO и NC служат для реализации самоподхвата и других функций схем. При этом NC – нормально-закрытые (замкнутые), а NO – нормально-открытые (разомкнутые).

Нормальным состояние контактов называется такое состояние, при котором на кнопку или пускатель не оказывается внешнего воздействия, т.е. когда на кнопку НЕ нажимают, а в случае с пускателем отсутствует напряжение на катушке и он выключен.

Такие пускатели также состоят из верхней и нижней части, для разнообразия рассмотрим верхнюю часть на примере другого пускателя.

Как вы можете увидеть – все составляющие детали такие-же как и на старых отечественных экземплярах. Однако обратите внимание на желтую деталь – изоляционную траверсу, на предыдущем экземпляре она была выполнена в коричневом цвете. Во-первых, по ее положению вы можете судить о состоянии пускателя. Если она втянута – пускатель включен, а если вровень или слегка выступает над крышкой – выключен.

К тому же вы можете принудительно включить его при проблемах с цепью питания катушки. Нужно просто вдавить траверсу отверткой или чем нибудь другим. Будьте внимательны, чтобы вас не ударило током, такая коммутация мощных нагрузок, а особенно двигателей может быть опасной. При отсутствии должной квалификации это делать не рекомендуется.

Что еще нужно знать о пускателях?

При подключении пускателя внимательно уточните на какое напряжение рассчитана катушка. Дело в том, что катушки в основном встречаются на напряжение 220 и 380 вольт, об этом говорит соответствующее обозначение на его корпусе.

Контакты катушки помечены, как А1 и А2. Один из контактов катушки может дублироваться на противоположной стороне пускателя для удобства подключения и сборки схемы. Это отражено на картинке ниже, обратите внимания с этой стороны только один из концов катушки – А2.

Информация о характеристиках пускателя выглядит следующим образом.

Пускатель не может коммутировать одинаковый ток для разных типов нагрузки. На корпусе может быть наклейка или нанесены надписи с характеристиками.

АС-3 и АС-1 – это категории применения, говорят о том, что индуктивную нагрузку, такую как электродвигатель он может коммутировать на ток до 9 А, а в случае применения активной нагрузки (ТЭНов и Ламп накаливания) до 25 А. Наклейка может состоять из нескольких секторов с подобной информацией или полезными данными, например такими.

На передней панели или сбоку может быть нанесена схема с расположением контактов.

Схема контактов выполняется в таком виде. На ней подписаны названия клемм и их положение в нормальном состоянии (отключенной катушке).

Блок дополнительных контактов для магнитного пускателя, что это такое и как использовать?

У траверсы есть еще одна дополнительная функция – соединение с дополнительным контактным блоком. Обратите внимание на её внешний вид и форму, на её выступающей части есть зацепы.

Блок контактов представляет собой дополнительный модуль, который монтируется поверх пускателя.

Обычно в блоке контактов располагается 2 или 4 пары контактов. 2 пары выполнены в нормально-разомкнутом виде, а 2 пары в замкнутом. Эти контакты могут быть использованы, как для коммутации нагрузки низкой мощности, так и для реализации дополнительных функций.

Дополнительные функции и оборудование

Стоит отметить, что к пускателям кроме блока с контактами подключается и дополнительное оборудование.

Тепловая защита, дополнительные блок контакты, ограничители напряжения, реверсивная блокировка, таймер задержки пуска. На картинке вы видите дополнительную аппаратуру для пускателя производства ABB.

Каждый из производителей может выпускать другие наборы дополнительных устройств. Инженеры крупных компаний предусмотрели решения для целого ряда производственных задач, которые реализуются с использованием пускателей. Раньше это приходилось делать с использованием отдельных модулей, а это увеличивало, как количество проводов расположенных в щитке для соединения оперативных цепей и блоков, так и общее занимаемое место.

Схема подключения магнитного пускателя

Я уже сказал, что магнитный пускатель подключается обычно через кнопки без фиксации. Такие кнопки установлены в кнопочном посте. Один из распространённых вариантов, это пост типа ПКЭ, изображен на фотографии ниже.

Если нужно реализовать вращение двигателя в обоих направлениях используют пост с тремя кнопками:

«Стоп» — при этом, обычно, красного цвета.

Внутри корпуса вы обнаружите клеммы на обратной стороне кнопок, причем на каждой есть пара нормально-замкнутых и пара нормально-разомкнутых, расположены на противоположных сторонах.

Взгляните на схему, для подключения пускателя через кнопочный пост, фазный провод через нормально-замкнутую пару контактов кнопки «стоп» подключают к нормально-разомкнутой паре кнопки «пуск». От второй клеммы кнопки «пуск» провод идёт на катушку.

Катушка одним концом подключается к нулю (если она на 220 В) или к другой фазе (если катушка 380 В). А вторым к проводу от кнопки пуск. При этом параллельно кнопке пуск подключается нормально-разомкнутая пара блок-контактов с пускателя (тот самый самоподхват).

Для этого один из контактов перемычкой соединяется с выводом катушки, который соединен с кнопкой «пуск», чтобы не прокладывать лишний кабель до кнопочного поста, а второй вывод блок-контакта подключается к той клемме кнопки «пуск», что соединена с фазным проводом, от кнопки «Стоп».

Контакты «13НО-14НО» — нормально-разомкнутые пары блок контактов, на англ. это те, что NO.

К кнопочному посту прокладывается всего три провода:

От блок-контактов к фазе на «ПУСК» для самоподхвата.

Выводы

Современные пускатели хоть и отличаются внешне и определенным функционалом, однако выполняют те же задачи, что и раньше. Пускатели разных типов можно взаимозаменять, нужно предусмотреть только ток, на который рассчитана конкретная модель.

Включить магнитный пускатель

Питание магнитных пускателей и реле

Магнитные пускатели широко применяются для включения — выключения потребителей большой и средней мощности. Катушки их электромагнитов питаются переменным током (50Гц), сила притяжения половинок магнитопровода меняется 100 раз в секунду от нуля, до амплитудного значения, поэтому пускатели заметно вибрируют, производя шум с частотой сети и её гармоник. Это загрязняет экологию помещения, где живут или работают люди, вынужденные иногда помногу часов подряд слушать, как гудят магнитные пускатели.

Механические вибрации магнитопровода пускателей ослабляют крепежные соединения и электрические контакты, что ведёт к выходу их из строя, а предотвращение отказов требует регулярных регламентных работ (подтяжка крепежных болтов и пр.) После подтяжки крепежа, контакты восстанавливаются, но гудеть пускатели продолжают. Вибрации усиливаются с их износом, что неблагоприятно отражается на состоянии здоровья людей.

Более 20 лет назад мною был внедрён способ полного устранения вибраций работающих магнитных пускателей разной мощности. За это время ни один пускатель не отказал, и не потребовал замены, даже в условиях нестабильного напряжения сети.

Смотрите так же:  Три провода в проводке

Типовую схему пускателя я дополнил выпрямителем и параметрическим стабилизатором тока удержания пускателя во включенном состоянии.

Когда катушка пускателя питается постоянным током, сила притяжения половинок её магнитопровода постоянна, не меняется циклически (как при питании переменным током). Движение частей магнитопровода отсутствует ввиду отсутствия вызывающих его причин (мгновенное значения тока катушки не меняется), поэтому пускатель не вибрирует и не производит шума. Вихревые токи в магнитопроводе, связанные с ними потери (нагрев ими магнитопровода) отсутствуют. Мощности электрического тока, необходимой для удержания пускателя во включенном состоянии, требуется на порядок меньше чем при типовом питании катушки пускателя переменным током. Это облегчает температурный режим катушки, что обеспечивает более надёжную работу пускателя и увеличение срока его эксплуатации.

В качестве выпрямителя используется полупроводниковый диод. Для сглаживания пульсаций выпрямленного напряжения – конденсатор. В качестве стабилизатора тока – бареттер, которым является обыкновенная лампочка накаливания, используемая в быту для освещения.

Свечение лампочки индицирует то обстоятельство, что пускатель включен, и другие, предусмотренные типовой схемой индикаторы работы, можно исключить.

Стабилизация тока обмотки пускателя происходит в согласии с простыми законами физики.

Ток через лампочку ограничивается её электрическим сопротивлением. Электрическое сопротивление лампочки пропорционально температуре её нити накала. Температура нити накала пропорциональна напряжению, приложенному к ней. Поэтому ток накала мало меняется при изменении напряжения накала.

На нелинейной зависимости тока нити накала от приложенного напряжения построен ряд параметрических стабилизаторов тока — бареттеров. Бареттер, как и осветительная лампочка, представляет собой нить накала в вакууме. Физика их работы не имеет отличий. То есть каждая лампа накаливания, используемая для освещения, может выполнять функцию бареттера, т.к. бареттером и является.

Принципиальная схема приведена на Рис.1.

В момент пуска, напряжение одной их фаз сети выпрямляется диодом Д1. Пульсации выпрямленного напряжения сглаживаются конденсатором С1. Выпрямленное, (постоянное) напряжение прикладывается к катушке магнитного пускателя. Пускатель срабатывает. Силовые контакты (К1, К2, К3) замыкаются и напряжение подаётся на выход (потребителю).

Через вспомогательные контакты (К4) в цепь катушки включается лампочка накаливания Л1. Это переводит пускатель из режима пуска в режим удержания во включенном состоянии и стабилизации тока удержания. Лампа Л1 загорается примерно на треть номинальной яркости, сигнализируя о том, что пускатель сработал.

В момент пуска на катушку пускателя подаётся полное напряжение выпрямителя, что благоприятно для его быстрого и надёжного включения даже при сильно пониженном напряжении сети. После включения пускателя, он переходит в режим удержания и стабилизации тока удержания. Ток удержания пускателя в несколько раз меньше пускового тока. Этот уровень тока, и его стабилизация обеспечивается параметрами бареттера.

Пониженный (в несколько раз по сравнению с типовым) уровень тока катушки облегчает её температурный режим, что наряду с отсутствием вибраций, обеспечивает многократное продление срока службы пускателя.

Рис.1. Принципиальная схема питания катушки магнитного пускателя постоянным током со стабилизацией тока удержания.

Назначение элементов и требования к ним.

1. Вкл. – Орган включения – выключения пускателя.

Обыкновенный маломощный выключатель любого типа, например тумблер, или контакты маломощного низковольтного реле, для дистанционного включения с применением низкого, не опасного для жизни напряжения.

2. Диод Д1. – Выпрямитель. Этот диод должен быть рассчитан на максимальный импульсный ток не менее пускового тока катушки пускателя, плюс ток заряда конденсатора С1. Максимальное обратное напряжение этого диода должно быть не менее амплитуды напряжения сети. Средний ток через него невелик, для пускателей ПМЕ-211 380В 25А он порядка 35…40мА. Выпрямительные диоды легко переносят 20-30-ти кратные импульсные перегрузки, поэтому по току подойдут самые распространённые и дешёвые выпрямительные диоды.

Поскольку в сети, при переходных процессах (включение – выключение) случаются выбросы напряжения, достигающие двойного амплитудного значения, для надёжной работы лучше выбрать диод не менее чем с двукратным запасом по обратному напряжению. Например КД226Б. (1000В х 1А). Или 2 диода Д226Б (400В х 0,3А), включенные последовательно. В процессе длительной эксплуатации было 2 случая пробоя таких диодов, когда применялся один диод Д226Б, что заставило перестраховаться, и применять 2 диода Д226Б.

3. Конденсатор С1. – Сглаживает напряжение пульсаций. Устраняет вибрации. Обеспечивает удержание пускателя при кратковременных провалах напряжения сети.

Обеспечивает стабильный процесс переключения пускателя из режима пуска в режим удержания. Может быть применён электролитический конденсатор 10…50мкФ х 450В. Чем мощнее пускатель, тем должна быть больше ёмкость этого конденсатора.

4. Диод Д2 – Предохраняет элементы схемы от импульса напряжения катушки пускателя в момент его выключения. Может быть применён любой маломощный диод, с макс. обратным напряжением не менее амплитуды напряжения сети, напр. Д226Б.

5. Лампочка освещения. Для пускателя ПМЕ-211 380В 25А применяется лампочка 40Вт (220В) в простом или миниатюрном исполнении. Обеспечивает необходимый уровень и стабилизацию тока удержания катушки магнитного пускателя. К лампочке подводится не 100 (как при питании переменным током), а в два раза меньше — 50 полупериодов напряжения сети. Она работает в сильно облегчённом режиме, что на порядок увеличивает надёжность работы, чем при штатной эксплуатации – (220В, 100 полупериодов переменного тока). Поскольку ток в лампочке ограничивается электрическим сопротивлением катушки пускателя, к ней прикладывается даже не половина, а примерно треть напряжения, на которое лампочка рассчитана. Мощность, рассеиваемая лампочкой в виде оптического и инфракрасного излучения, в несколько раз меньше номинальной. Это обстоятельство увеличивает надёжность работы, как самой лампочки, так и устройства в целом.

Методика испытаний и подбора элементов с заранее неизвестным током удержания пускателя.

Если ток и напряжение удержания имеющегося в наличии пускателя, неизвестны, они могут быть легко измерены при помощи лабораторного автотрансформатора, выпрямителя и АВО-метра. Но и это не обязательно, потому что фактически нас интересует только один параметр – напряжение отпускания, которое целесообразно выбрать с некоторым запасом по условиям фактической эксплуатации пускателя. Пусть известно, что на объекте эксплуатации напряжение сети падает иногда до 180В. Напряжение отпускания можно выбрать 150…170В. Операция сводится к подбору лампочки и испытанием режима пуска и удержания при пониженном и повышенном напряжениях.

В продаже имеется широкий выбор ламп накаливания на 220В, что позволяет применять эту рационализацию для широкого ассортимента магнитных пускателей, от единиц до сотен ампер.

Подбор можно начать с лампочки 10Вт. Если при понижении напряжения (ЛАТРом) до реально существующего предела изменений напряжения сети (+некоторый запас), пускатель не удерживается во включенном состоянии, в патрон вкручивается более мощная лампочка, (15Вт) и испытание повторяется. Возможна комбинация последовательно-параллельного включения лампочек, что позволяет организовать оптимальный режим удержания любых пускателей.

При недостаточной ёмкости конденсатора, вибрации магнитопровода устраняются не полностью. В этом случае надо увеличить ёмкость конденсатора до полного исчезновения вибраций.

Простота схемы и методики подбора элементов позволяют внедрять эту рационализацию персоналу средней квалификации.

Рационализация была внедрена как в быту, так и на многих производствах, а один самодельный экземпляр, уже более 20 лет используется у меня дома. Работает круглые сутки. Не гудит и удерживает пускатель при падении напряжения сети до 140В, это напряжение отпускания выбрано с запасом, потому что у меня дома напряжение сети меняется от 150В (зимой 6 часов вечера) до 250В (летом 3 часа утра).

Это рацпредложение неоднократно внедрено в различных организациях, и за него получено вознаграждение. Буду рад, если кто повторит этот опыт.

Любые электромагнитные реле, за очень редким исключением, имеют многократную разницу тока включения и тока отпускания. Соответственно напряжение включения и напряжение отпускания отличаются в несколько раз. Этот принцип применён и для низковольтных реле постоянного тока разных типов, также увеличивает срок их службы, поскольку облегчает температурный режим, увеличивает надёжность работы при колебаниях напряжения питания. Для низковольтных реле роль бареттеров выполняют низковольтные лампочки из их широкого ассортимента. Включением лампочек последовательно/параллельно можно получить бареттер, с необходимой характеристикой практически для любого реле, даже малой мощности.
Для реле постоянного тока схема существенно упрощается. Не нужен выпрямительный диод Д1 и конденсатор С1. При этом время срабатывания реле остаётся типовым, а время отпускания уменьшается, поскольку ток удержания снижен.

Эта схема может применяться и для ускоренного срабатывания реле с ускоренным-же отпусканием. В этом случае на реле подаётся удвоенное или утроенное от номинала напряжение питания, что определяет ускоренное время срабатывания, а после срабатывания бареттер ограничивает и стабилизирует ток вблизи нижнего порога отпускания, что обеспечивает как облегчённый температурный режим реле, так и уменьшение времени отпускания.

Похожие статьи:

  • Провода для светильников прозрачные Провод прозрачный 2*0.75 с тросиком (круглый) Прозрачный круглый провод с медными многопроволочными токопроводящими жилами, с изоляцией из ПВХ-пластиката, в оболочке из силикона. Предназначен для присоединения различных осветительных […]
  • Узо 10 ма 32 а Устройство защитного отключения (УЗО) 4p 32А 100мА AC 4.5кА с селективной защитой TDM _ Компания Schneider Electric является мировым экспертом в управлении энергией и автоматизации. 160 000 сотрудников компании, оборот которой в 2016 […]
  • Характеристики узо a ac SE EASY 9 УЗО 4P 40А 100мА AC Компания Schneider Electric является мировым экспертом в управлении энергией и автоматизации. 160 000 сотрудников компании, оборот которой в 2016 финансовом году составил около 25 млрд. евро, […]
  • Узо 22 25а Устройство защитного отключения (УЗО) 2p 25А 300мА AC 4.5кА с селективной защитой TDM _ Компания Schneider Electric является мировым экспертом в управлении энергией и автоматизации. 160 000 сотрудников компании, оборот которой в 2016 […]
  • Магнитный пускатель для электродвигателя 30 квт Контактор Siemens 3RT2037-3AG20 Контактор Siemens Sirius 3RT20373AG20 КОНТАКТОР, AC3: 30КВТ/400В, БЛОК-КОНТАКТЫ 1НО+1НЗ, НОМИНАЛЬНОЕ ПИТАЮЩЕЕ НАПРЯЖЕНИЕ ЦЕПИ УПРАВЛЕНИЯ US 110В АС 50/60ГЦ, 3-ПОЛЮСНЫЙ, ТИПОРАЗМЕР S2, ПРУЖИННЫЕ […]
  • Длина провода варочной панели Подключение электрических и индукционных варочных панелей Bosch, Electrolux, Аристон, Gorenje, Hansa, Aeg, Zanussi При покупке кухонной отдельно стоящей электроплиты в большинстве случаев для её подключения достаточно просто включить […]