Зачем заземление треугольником

Зачем заземление треугольником

Здравствуйте, уважаемые посетители Elektrika56!

Несколько дней назад была опубликована статья про заземление.

В ней подробно и с картинками рассказано о том, как монтируется контур заземления в линию.

Такую схему выбрали исходя из возможностей расположения на участке.

Очередной объект. Монтаж контура заземления. Есть возможность смонтировать контур заземления треугольником. Данный способ подразумевает небольшую экономию материала. Используется три токоотводящих электрода вместо пяти. Между электродами — 9 метров соединительной полосы, вместо 15 (15 — это если заземление монтируется в линию).

Выглядит заземление треугольником вот так:

Выбрали место, выкопали траншею. Практически равносторонний треугольник. Сторона три метра. Глубина 0,6 -0,7м.

Закупили материал для монтажа контура заземления: круглый пруток диаметром 18мм — 9 метров, полоса 40*4 — 11 метров.

Пруток, который будет использоваться в качестве токоотводящего электрода разделили на три части. Одну сторону заточили.

С помощью большого перфоратора (энергия удара 10 джоулей) и коронки для выпиливания подрозетников забили электроды в землю. Оставили 20 см для сварки.

Казалось бы осталось уложить соединительную полосу и заварить контур.

Но погода сыграла злую шутку. Сначала пошел небольшой дождь. Потом разошелся. В итоге траншея оказалась залита водой полностью.

В итоге пришлось отложить работу на три дня.

Когда подсохло, уложили соединительную полосу, проварили.

Места сварки окрасили грунт-эмалью, так как они наиболее подвержены коррозии. Сам контур не окрашивается.

Для соединения контура заземления с распределительным щитком вывели полосу к фундаменту, подняли на пол-метра от земли.

Для подключения провода приварили болт м8.

Чтобы надежно закрепить полосу, в фундамент дома забили пруток и приварили его к полосе.

Засыпали траншею, разровняли площадку. Монтаж контура заземления окончен.

Как сделать заземление в частном доме самому

Если в розетке в доме два провода, для безопасного пользования приобретенными электроприборами необходимо сооружение новой системы заземления и переоборудование электросети в целом.

Земляные работы при устройстве системы заземления

Зачем заземление в доме

Заземление в частном доме 380В необходимо для предотвращения ударов электротоком потребителей при неисправности электросети, т.е. при наличии опасных потенциалов ток пойдет не по телу человека, а уйдет по контуру (треугольник) заземления в землю.

Заземление дома своими руками не представляет труда при знании основных требований электробезопасности и норм проектирования.

Сколько стоит проект реконструкции электросети, расчет и монтаж ЗУ можно узнать в энергоснабжающей организации.

Зачем менять схему электроснабжения

Новые приборы (компьютеры, конвекторы, ванны с гидромассажем и др.), включенные в старые сети, несут потенциальную угрозу для жизни людей. Если подключить их в сеть, при возникновении КЗ (короткого замыкания) на их корпусах может находиться опасный для человека потенциал.

При реконструкциях и строительстве новых инженерных сетей запрещено применять TN-С-заземление. Для жилых домов применяют TN-системы. Основным назначением которых является защита человека от поражения электротоком при нарушении изоляции. К контуру должны быть подключены все электроприборы, при наличии системы уравнивания потенциалов и металлические конструкции (ванны, трубы и др.).

Основные требования, предъявляемые к системе:

  • быстродействие защиты;
  • уменьшение вероятности возникновения пожаров. Образование токов большой величины невозможно, т.к. коммутационные аппараты срабатывают быстрее.

Системы заземления в доме

TN-С – самый старый вид заземления с глухозаземленной нейтралью. Схема выполнена так, что от источника электроэнергии (РУ-0,4кВ на подстанции) до потребителя защитный и рабочий ноль совмещены. По новым требованиям ПУЭ такие электрические сети подлежат реконструкции и замене на TN-С-S или TN-S-систему.

TN-S является самым надежным из подтипов систем заземления с глухозаземленной нейтралью. Защитный PE,- и рабочий N-проводники подходят к вводно-учетному устройству потребителя.

Преимущества:

  • высокая электробезопасность и надежность;
  • возможность установки системы уравнивания потенциалов и устройств защитного заземления;
  • не требуется повторное заземление;
  • отсутствие высокочастотных помех от электроприборов;
  • нет необходимости следить за исправностью контура заземления.

Недостатки:

  • высокая стоимость строительно-монтажных работ. Переоборудование TN-С в TN-S дорогостоящее. Поэтому целесообразно делать TN-S-заземление на объектах, близко расположенных к питающей подстанции.

TN-С-S заземление применяется чаще, чем остальные. PE,- и N-проводники соединены на части линии. Разделение защитного и рабочего нолей, как правило, происходит перед вводно-учетным устройством потребителя.

Преимущества:

  • высокая электробезопасность;
  • низкая стоимость строительно-монтажных работ;
  • возможность сооружения повсеместно;
  • возможность применения системы уравнивания потенциалов.

Недостатки:

  • при возникновении аварийных ситуаций на подстанции TN-С-S-система при обрыве PEN-проводника неэффективна.

Устройство защитного отключения в системе TN-С-S

Для того чтобы узнать, какое и как сделать заземление (схема), необходимо выполнить проект, сделать несколько вариантов, выполнить расчет ЗУ и определить сечение провода и размеры контура заземления. Для частных домов выбирают систему TN-С-S ввиду ее высокой эффективности и низкой себестоимости.

Заземляющее устройство

Для жилых частных домов необходимо выполнить контур повторного заземления PEN-проводника с последующим его разделением на рабочий и защитный ноль при наличии в доме новых электроприборов с третьим контактом (ПК, утюги, ванны джакузи и др.).

Система заземления состоит из наземной и подземной части, соединение которых происходит в распределительном щитке.

Заземляющее устройство представляет собой конструкцию из нескольких элементов: заземляющего провода и заземлителя. Соединяет контур защитного заземления с коммутационным аппаратом в щите. Далее заземление идет ко всем бытовым приборам (масляные обогреватели, ванны с массажем, электродуховки и др.).

Заземлитель – подземная часть, контур заземления, посредством которого потенциал при авариях уходит в землю.

Факторы, которые влияют на сопротивлении заземляющего устройства:

  1. Тип грунта (суглинки, черноземы, торф и др.).
  2. Структура грунта.
  3. Состояние почвы. Необходимо сделать расчет для зимнего и летнего периода, т.к. в разные времена года токопроводимость ее разная.
  4. Глубина заложения вертикальных заземлителей.
  5. Расстояние между вершинами контура.
  6. Материал изготовления электродов.

Лучшими качествами для сооружения контура обладают торфяные грунты, суглинки и глины с высоким содержанием влаги. Наиболее тяжелым вариантом и малоэффективным является каменистая и скалистая почва. Если территория участка неблагоприятна для сооружения контура, то для большей эффективности ЗУ повышают токопроводимость грунта.

Материалы и инструменты

В процессе строительно-монтажных работ необходимы:

  • перфоратор;
  • кувалда;
  • стандартный набор ключей (гаечных);
  • болгарка для резки металла под заданные размеры;
  • лопата штыковая;
  • сварочный аппарат (все соединения контура заземления должны выполняться сваркой).

Количество и тип материалов для изготовления контура и заземляющего выпуска выбирают исходя из расчетов и особенностей стройки. Для обычного жилого дома с нагрузкой до 10 кВт понадобится:

  1. Полосовая сталь 40х4 (ГОСТ 103-76) для изготовления горизонтального заземляющего провода. Длина выбирается, исходя из размеров контура (не менее 1,2 м – для контура треугольником).
  2. Сталь угловая 50х50 (ГОСТ 8509-93) для вертикальных заземлителей. Вместо нее может быть использована круглая сталь (сечение 10 и 16 мм 2 ).
  3. Полосовая сталь 40х4 для присоединения вводно-учетного шкафа к контуру заземления треугольником.
  4. Болты (ГОСТ 7805-70).
  5. Заземляющий проводник – для присоединения защитного заземления к розеткам и электроприборам.

Электроды вертикальные (ГОСТ 9467-75) и горизонтальные выполняют медными либо стальными (ПУЭ п.1.7.111). Нанесение лакокрасочных покрытий недопустимо.

Размеры указаны в таблице 1.7.4 действующих Правил устройства электроустановок.

Сечение заземляющего провода аналогично фазным, для чего необходим проект, в котором содержится расчет и смета (где можно увидеть, сколько стоит монтаж и приобретение оборудования, чтобы подключить ЗУ к электросети).

Крепление кабеля выполняется болтовыми соединениями, для чего используют ГОСТированные изделия.

Для того чтобы выяснить, сколько стоит выполнить монтаж заземления 380 В в частом деревянном доме самому, необходимо определиться с методом заложения контура, его размером, типом применяемых материалов.

Порядок монтажных работ

Рассматривается устройство заземления на примере схемы треугольником.

Выбор места расположения

От места расположения зависит безопасность человека и животных при возникновении аварийных ситуаций – при пробое и срабатывании защиты около контура заземления находится опасный потенциал. Поэтому правильное заземление необходимо подключить дальше от пешеходных дорожек и крыльца – за домом. Опасную зону следует оградить. Для повышения эстетики участка зону контура (треугольник) можно задекорировать – уложить валунами, например.

Присоединение заземляющего проводника к щитку

Земляные работы

В первую очередь необходимо выкопать траншею в форме выбранного многоугольника и прямую до места подвода заземления в дом. Для стандартного контура треугольником размеры ямы составляют 3х3х3 м, шириной до 0,3-0,5 м. В случае контура в виде прямой линии, длина траншеи должна составлять не менее 4 м, оптимальная глубина 0,8 м.

Согласно схеме треугольник, необходимо забить электроды (кувалдой) в вершину многоугольника на глубину 2-3 м, так чтобы можно было соединить их сваркой (припуск не более 0,2 м). Вместо кувалды можно использовать буры. Для линейного контура электроды (4-5 шт.) забивают через каждый метр.

Смотрите так же:  Калькулятор расчета сечения провода 12 вольт

Далее необходимо сварить вертикальные электроды полосовой сталью в единый каркас. Затем в траншею, направленную к дому, укладывается стальная полоса и присоединяется одним концом к главной заземляющей шине на вводном щитке, другим – к ближайшей вершине многоугольника. Подключить контур к главной заземляющей шине можно иначе.

Для этого нужно вывести стальную полосу из траншеи (возле места установки приборов учета), присоединить с помощью болтов к заземляющему проводнику и далее присоединить к PE-проводнику на главной заземляющей шине.

Материал изготовления заземляющего провода: сталь не менее 75 мм 2 , алюминий 16 мм 2 , медь 10 мм 2 .

Места сварки необходимо обрабатывать антикоррозийным раствором (битумом), траншею закопать и уплотнить просеянным грунтом.

Для того чтобы быстрее забить электроды, следует один конец заострить болгаркой.

Для повышения токопроводимости грунта, его пропитывают соляным раствором в местах заложения вертикальных электродов.

Чтобы избежать возникновения переходных сопротивлений между вертикальными и горизонтальными электродами, удары кувалдой производят прямые (вертикальные) без раскачивания.

Проверка работоспособности контура

После того как проект (расчет ЗУ, сечение провода) и монтажные работы выполнены, необходимо произвести замер контура сопротивления. Для этого при наличии специального устройства проводят тестирование. Если нет, то необходимо обратиться к квалифицированному электрику за помощью. Замеры нужно производить в соответствии с гл.1.8. ПУЭ и ПТЭЭП.

Подготовительные работы

Перед проведением замеров нужно произвести осмотр контура (треугольником) сопротивления на предмет целостности соединений, наличия антикоррозионного покрытия на болтах, состояния контактных сопротивлений. При повторных замерах траншею не разрывают.

Надежность швов нужно проверять простукиванием молотком, необходимы гаечные ключи для выявления ослабленных болтовых соединений.

Также при осмотре всех составляющих заземляющего устройства нужно проверить соответствие их требованиям ПУЭ и технических решений (проект):

  • присоединение к заземляющему контуру системы уравнивания потенциалов;
  • правильность подключения заземляющего провода к главной заземляющей шине, сечение жил заземляющего и рабочего ноля.

В завершение нужно убедиться в том, что монтаж выполнен правильно.

Зачем нужно проводить замеры

При изменении конфигурации, количества электродов, внедрении системы уравнивания потенциалов, а также при устройствах новых контуров производится контрольный замер сопротивлений.

Наиболее достоверные показания, которые вносятся в проект, снимают при условии наибольшего просыхания почвы – в сухой жаркий период летом, зимой при промерзании верхних слоев. При таких условиях наблюдается наибольшее значение сопротивления грунта.

При снятии показаний в другие периоды нужно использовать поправочные коэффициенты.

Устройство прибора замера М416

Для замеров сопротивлений электрики используют измерительный прибор М416. Используется для измерений активных и удельных сопротивлений грунта и контуров заземлений.

Прибор замера сопротивления контура заземления М416

Устройство должно быть занесено в Госреестр, иметь действующий срок поверки.

Технические характеристики:

  • масса – 3 кг;
  • рабочий диапазон температур: -25..+60°С;
  • диапазон измеряемых сопротивлений: 0,1…1000 Ом;
  • количество циклов проверки с одними элементами питания: 1000.

Порядок выполнения работ при помощи устройства М416:

  1. Установить элементы питания и включить прибор, проверить полярность.
  2. Установить прибор на ровную горизонтальную поверхность.
  3. Откалибровать прибор.
  4. Расположить прибор на наименее близком расстоянии к измеряемому контуру заземления.
  5. Выбрать требуемую схему подключения:
  • трехзажимная схема;
  • четырехзажимная схема (для более точных замеров, т.к. в этом случае отсутствует погрешность контактных соединений и проводов).
  1. После того как выбрана схема подключения, нужно произвести замеры. Для чего включают прибор, красной кнопкой и регулятором вращения устанавливают стрелку на нулевой отметке шкалы.
  2. Полученные данные с учетом кратности измерений нужно записать, и, при необходимости, внести в проект молниезащиты при условии дальнейшего проектирования.

Места присоединения контактов заземляющего устройства к проводам измерительного прибора нужно зачищать с помощью напильника. В противном случае контакт может оказаться слабым (недостоверным).

При необходимости замерить контуры величиной более 10 Ом, следует учитывать коэффициент кратности х5, х20 или х100.

Альтернативные варианты – проверка работоспособности с помощью лампочки. Необходимо присоединить один контакт к фазному проводу, а другой к заземляющему проводнику. Яркий свет лампы свидетельствует о том, что монтаж выполнен правильно. Тусклый свет – признак слабых соединений между деталями контура. Отсутствие света указывает на то, что проект заземления и расчет контура треугольником необходимо переделать.

Периодичность замеров

Согласно ПТЭЭП осмотр целостности контура заземления проводится один раз в полгода. При отсутствии в пользовании соответствующих электроприборов, необходимо воспользоваться услугой заказа электролаборатории.

Присоединение PE-проводника к бытовым электроприборам

Количество заземлителей

Проект внешнего электроснабжения включает в себя расчет контура заземления и количества необходимых электродов. Земля является нелинейным проводником, поэтому площадь конструкции заземления должна обеспечивать надежную защиту от поражения электротоком.

Слишком большое расстояние между вершинами контура ведет к разрыву электрической связи между ними и отсутствию эффективности ЗУ. В контуре, выполненном треугольником, эффективное расстояние между вершинами составляет 1,2м.

Кроме системы заземления для повышения электробезопасности, необходимо выполнить расчет (проект) и монтаж других систем, например, подключить СУП (система уравнивания потенциалов) и молниезащиту.

Системы уравнивания потенциалов

СУП разработаны для защиты людей от поражения электрическим током, когда защитное устройство находится под опасным потенциалом (т.к. в случае аварии по контуру будет протекать ток). Для возведения качественной СУП рекомендовано (при необходимости) обратиться к специалистам, которые выполнят расчет установки, а также укажут, сколько стоит провести монтаж самому и при помощи подрядной организации.

Подключение ванны к системе уравнивания потенциалов

Бытовые электроприборы при возникновении КЗ образовывают токи различных величин. Если для каждого устройства возводить отдельные ЗУ, то возникает разность потенциалов, опасная для жизни человека. Система уравнивания потенциалов соединяет между собой все бытовые электроприборы и металлические конструкции в доме (ванны, трубы и др.) в единую цепь заземления, обеспечивая равномерность потенциалов.

Если волнует вопрос о том, как сделать заземление в частном доме 380 В максимально эффективным, следует задуматься о сооружении молниезащиты.

Присоединение заземлителей выполняется теми же PE-проводниками, как и в системе заземления. Существует два вида систем: основная и дополнительная.

Главная заземляющая шина

Дополнительная СУП

Необходима для повышения безопасности во влажных помещениях дома. Состоит из двух элементов – коробки уравнивания потенциалов и соединительных проводников. Установка КУП предполагается во влажном помещении, подальше от ванны.

Монтаж дополнительной СУП 380 В:

  • определение места, где возможно установить СУП, особенностей (сечение, материал и др.);
  • соединение ВРУ с КУП;
  • присоединение к системе СУП всех металлических элементов (конструкции ванны, трубы водоснабжения, отопления, канализации);
  • замер электрического контура системы уравнивания потенциалов.

Требования к дополнительной системе уравнивания потенциалов:

  • в системе TN-С запрещено устраивать систему уравнивания потенциалов;
  • соединение PE,- и N-проводника после главной заземляющей шины запрещено;
  • к системе СУП также должны быть присоединены акриловые ванны.

Видео про заземление

Как сделать своими руками надежное заземление для дома из оцинкованных штанг, рассказывает это видео.

Заземление в доме – основная мера защиты от поражения электрическим током. При модернизации старых систем в новые, как правило, в TN-С-S, необходимо провести все дополнительные мероприятия: расчет ЗУ и молниезащиты, монтаж системы уравнивания потенциалов (к которой подключаются все приборы и металлические конструкции, например, ванны) и др.

Необходимо сделать расчет в нескольких вариантах, чтобы выяснить, сколько стоит монтаж каждого технического решения, и выбрать наиболее экономичный. Выполнить заземление в частном доме своими руками несложно при наличии базовых знаний в электрике и первичных навыков проведения ремонтных работ дома.

Зачем заземление треугольником

Нарушения магнитного состояния трансформатора почти не получается. Если бы мы привели вторичную обмотку к первичной, т. е. положили то токи в соответствующих фазах (на рис. 146а в фазах А и а) были бы равны между собою, т. е.. Наличие нейтрального провода со стороны первичной цепи несомненно удорожает систему, а потому такая система почти и не применяется.

Предположим теперь, что нейтральный провод со стороны первичной цепи отброшен. В таком случае при загрузке одной фазы вторичной обмотки (на рис. 146b фазы а) во всех фазах первичной обмотки пойдут токи. В сопряженной фазе первичной обмотки, т.е. в фазе А ток будет равен а в двух других фазах по

В указанных соотношениях между токами легко убедиться из рассмотрения рис. 147, на котором схематически изображен сердечник трансформатора с первичными катушками и одною вторичною катушкою на среднем стержне. Мы имеем, во-первых, что сумма ампервит-ков одного окна, т. е. действующих на рис. 147 по пунктирной линии t, должна быть равна нулю; во-вторых, в сопряженной первичной фазе ток вдвое больше тока в двух других первичных фазах (по закону Кирхгофа), в-третьих, направление токов в несопряженных первичных фазах прямо противоположно направлению тока в сопряженной первичной фазе, потому что в первых двух фазах токи идут от концов фаз к началам В и с, а в последней фазе от начала фазы А к концу. Вследствие этого направления токов в сечениях первичных фаз будут такими, какими они показаны на рис. 147. Написав равенство ампервитков для одного окна

где IX — ток в сопряженной первичной фазе, получаем, что

Из рассмотрения рис. 147 мы видим, что на всех сердечниках нет уравновешенности ампервитков. На крайних стержнях имеются ампервитки первичной обмотки, но нет ампервитков вторичной обмотки. На среднем стержне вторичные ампервитки преобладают над первичными. Если всмотреться в действия неуравновешенных ампервитков, то мы заметим, что во всех стержнях они действуют в одну сторону; на рис. 147 вниз. Это значит, что неуравновешенные ампервитки создадут добавочное магнитное поле, которое во всех стержнях будет направлено в одну сторону и будет замыкаться через воздух . Добавочное магнитное поле, меняясь с частотою тока, индуктирует во всех фазах первичной и вторичной обмоток электродвижущие силы одной фазы, которые в первичной обмотке вместе с электродвижущими силами, индуктируемыми главным магнитным потоком, уравновешивают первичное напряжение

Смотрите так же:  Провода марок nym

Во вторичной обмотке те же электродвижущие силы вместе с электродвижущими силами главного потока дают фазные электродвижущие силы.

Нетрудно показать, что фазные электродвижущие силы в этом случае получаются неравными. Пусть треугольник АВС на рис. 148 представляет треугольник приложенного первичного напряжения, а —электродвижущие силы добавочного магнитного потока. Если бы нулевая точка О треугольника напряжений ABC не сдвинулась со своего места, то фазные электродвижущие силы с первичной стороны должны были определяться векторами . Этими векторами определялись бы по величине и магнитные потоки в трех стержнях, так как электродвижущие силы пропорциональны вызвавшим их потокам. Магнитные потоки в сердечнике трехфазного трансформатора соединены звездой, а потому к ним приложимо свойство давать в сумме в каждый момент времени нуль, т. е. Ф1+ Ф23= О. Это значит, что векторы должны дать замкнутый равносторонний треугольник. Но последние векторы не могут дать замкнутого равностороннего треугольника. Такой треугольник мы получим, если сместим нейтральную точку О в точку на расстоянии . В этом случае векторы уже дадут замкнутый равносторонний треугольник. Таким образом в результате добавочного потока нулевая точка обмотки смещается на величину добавочной электродвижущей силы. Последнее явление совершенно подобно тому, что имеет место при холостой работе трансформатора с несимметричною магнитною системою, когда смещение нулевой точки выражалось величиной фазного напряжения. Имея в виду, что полный ток нагрузки больше тока холостой работы раз в 20, то при несимметричной нагрузке с полным током смещение нулевой точки выразится фазного напряжения. Такое большое смещение нулевой точки вызывает большое неравенство в фазных напряжениях, что, конечно, представляет большое неудобство с эксплуатационной точки зрения. В том случае, когда нейтраль первичной звезды не может быть соединена с нейтралью генератора, рассматриваемое соединение не рекомендуется брать при трансформировании тока отдельными однофазными трансформаторами или одним трехфазным трансформатором броневого типа, так как в фазных напряжениях получаются значительные третьи гармоники. Оно не рекомендуется даже и при передачах звезда — звезда на звезда — треугольник при условии заземления нейтралей высокого напряжения, потому что замыкающиеся в этом случае через землю токи третьей гармоники могут причинить большие расстройства в соседних телефонных и телеграфных линиях.

При трансформировании трехфазным трансформатором стержневого типа третьи гармоники, как мы видели и ранее, проявляются значительно слабее, а потому соединение звезда—звезда в данном случае будет допустимо. Группа звезда— звезда применяется при небольших распределительных сетях с мало нагруженным вторичным нулевым проводом. При высоких напряжениях эта группа применяется только при наличии третичной обмотки, соединенной треугольником. Эта последняя необходима для прохождения третьей гармоники намагничивающего тока; она же может дать ток для защитных приспособлений в случае короткого замыкания главной обмотки.

В. Звезда—зигзаг. Для того чтобы в соединении обмоток трансформаторов звезда—звезда избавиться в известной мере от добавочного магнитного потока при несимметричной нагрузке применяют соединение вторичных обмоток звезда—зигзаг. Если бы при таком соединении вторичных обмоток имелась во вторичной цепи односторонняя нагрузка, то, как видно из рис. 149, токи проходили бы во вторичной и первичной обмотках двух стержней, Ампервитки первичной обмотки обоих стержней компенсировали бы ампервитки вторичной обмотки тех же стержней и магнитное равновесие не нарушалось бы, т. е, не было бы добавочного однофазного магнитного потока. Следует отметить; что соединение вторичных обмоток зигзагом удорожает трансформатор, так как требует на 15% больше меди, чем соединение просто звездою.

С. Треугольник—треугольник. При соединении первичных и вторичных обмоток трех однофазных трансформаторов или одного трехфазного трансформатора треугольником линейное напряжение равно фазному напряжению, а линейный ток в раз больше фазного тока, т, е. Таким образом каждый трансформатор должен быгь намотан на полное линейное напряжение, но для тока, составляющего 58% от линейного. Так как обмотки находятся под полным линейным напряжением, а не под фазным, как у трансформатора с обмотками, соединенными звездою, то изоляция их должна быть относительно более совершенной. Вследствие этого стоимость трансформатора с обмотками треугольник — треугольник болег высокая, чем аналогичного трансформатора с обмотками звезда—звезда.

Несимметричная нагрузка трансформатора с обмотками треугольник—треугольник не дает добавочных магнитных потоков, как у трансформатора с обмотками звезда—звезда. Если бы нагрузка вторичной цепи была односторонняя, то токи проходили бы во всех фазах первичной и вторичной обмоток, как это указано на рис, 126, Вследствие этого ампервитки первичной и вторичной фаз одного и того же стержня уравновесятся, и однофазного и добавочного магнитного потока не будет.

Соединение треугольник — треугольник дает возможность не прерывать работы линии при порче одной из фаз, если трансформирование происходит помош,ью трех однофазных или одного броневого трехфазного трансформатора, В этих случаях просто отключают пострадавший трансформатор или пострадавшую обмотку, не отключая двух других от линии. При трансформировании тока трехфазным броневым трансформатором обмотки пострадавшей фазы замыкают накоротко, предварительно отключив их от обмоток двух других фаз. Последнее необходимо для того, чтобы токи короткого замыкания в них уничтожили часть магнитного потока двух других фаз, замыкающихся через сердечник пострадавшей фазы, чтобы не было, следовательно, высокого напряжения в пострадавших обмотках. При трансформировании тока одним стержневым трехфазным трансформатором изолировать пострадавшую фазу нельзя, так как магнитная цепь у всех фаз общая.

С выходом фазы из работы система двух закрытых треугольников превращается в систему двух открытых треугольников, вследствие чего отдаваемая мощность должна быть понижена до 58% общей мощности трех трансформаторов (или одного трехфазного трансформатора).

D. Треугольник — звезда; звезда — треугольник. Первое соединение обмоток, треугольник—звезда, является обычным у повыси-тельных трансформаторов высокого напряжения и распределительных трансформаторов низкого напряжения при четырехпроводной системе; второе соединение обмоток, звезда—треугольник,—у понизительных трансформаторов подстанции.

Токи и напряжения обмоток, соединенных треугольником, находятся в тех же отношениях к линейному току и напряжению, как и у рассмотренного соединения. Ток в обмотках, соединенных звездою, равен линейному току, а напряжение обмоток в раз меньше линейного напряжения, т. е. Таким образом, если нейтраль звезды заземлена, то напряжение, действующее на изоляцию обмотки и линии, будет составлять всего 58% от линейного напряжения; на это напряжение и нужно рассчитывать изоляцию линии. Если же нейтраль не заземлена, то изоляцию обмоток следует рассчитывать на полное напряжение, потому что при заземлении линии изоляция подвергается действию полного линейного напряжения.

Необходимо заметить, что и при заземленной нейтрали изоляция может подвергнуться действию напряжения, большего, чем фазное, если заземление нейтрали осуществляется через сопротивление.

Трансформатор с обмотками, соединенными в треугольник — звезда или звезда — треугольник мало чувствителен к несимметричным нагрузкам. Если бы при первичной обмотке, соединенной треугольником, и вторичной обмотке, соединенной звездою с нейтральным проводом, имелась односторонняя нагрузка, то токи проходили бы только через соединенные обмотки одного стержня (рис. 150). Это значит, что магнитное равновесие не было бы нарушено ни на этом стержне, ни на двух других: добавочного потока не было бы. Если бы вторичная цепь не имела нейтрального провода, то при односторонней нагрузке токи проходили бы в двух соединенных фазах. И в этом случае на всех стержнях имелось бы магнитное равновесие, и добавочный магнитный поток отсутствовал бы. Вследствие этого не происходило бы смещения нейтральной точки и не было бы заметной асимметрии фазных напряжений.

Последнее обстоятельство служит причиною тому, что трансформаторы с обмотками треугольник — звезда особенно охотно применяют в распределительных сетях (например осветительных). Следует отметить, однако, что порча одного трансформатора или одной фазы трехфазного трансформатора выводит из действия группу треугольник— звезда, так как со стороны вторичной цепи нельзя получить симметричной системы (рис. 151, верхняя группа). Группа звезда — треугольник при той же порче дает возможность работать с мощностью, составляющей 58% от нормальной мощности, при условии, что нейтраль звезды трансформатора будет соединена, например, путем заземления с нейтралью генератора (рис. 150, нижняя группа). Нетрудно видеть, что передача, в которой отправительный трансформатор включен треугольником — звездой с заземленной нейтралью, а приемный трансформатор звездой — треугольником также с заземленной нейтралью, может работать при порче одной фазы у приемного трансформатора. Группа — треугольник у высшего напряжения и звезда у низшего напряжения—применяется в больших распределительных трансформаторах с нагруженным полностью нулевым проводом. Группа — звезда у высшего напряжения и треугольник у низшего напряжения—применяется в главных трансформаторах больших силовых станций и подстанций, не служащих для распределения.

Зачем нужно заземление — ликбез по электробезопасности

Что такое заземление

Заземлением называют подключение токопроводящих элементов, в норме не пребывающих под напряжением, к заземлителю — заглубленной в грунт металлической конструкции с низким электрическим сопротивлением. В качестве упомянутых токопроводящих элементов могут выступать металлический корпус электроустановки, рабочие органы машин или бытовых приборов и т.д.

Смотрите так же:  Заземление здания когда требуется

Также заземляют экранирующие оплетки электрических кабелей.

Для чего нужно заземление

Защитное заземление обеспечивает безопасную эксплуатацию электроустановок.

Функциональное используется для работы прибора или схемы — играет ту же роль, что и нулевой проводник в электросети.

В системах молниезащиты заземлитель подключается к молниеприемнику.

Принцип работы

Контур заземления функционирует за счет способности грунта поглощать электрический заряд. Если корпус оборудования в результате пробоя изоляции оказался под напряжением, то заряд будет стекать в землю. Когда пользователь коснется корпуса, ток все равно будет двигаться по пути наименьшего сопротивления, то есть через заземление, а не через тело человека. Не будь заземления, в подобной ситуации пользователь получил бы электротравму.

Условием нормального функционирования заземления является низкое сопротивление заземлителя. Эта величина зависит от параметров грунта:

  • плотность;
  • влажность;
  • соленость;
  • площадь контакта с заземлителем.

Способность грунта впитывать заряд сильно падает при замерзании. Поэтому штыри заземлителя вбивают на глубину ниже отметки промерзания, зависящей от широты местности. Данные о глубине промерзания грунта для разных регионов Российской Федерации приведены в СНиП «Строительная климатология».

Наглядная демонстрация заземления

На каменистых, песчаных и вечномерзлых грунтах, в которые сложно заглубиться, применяют электролитические заземлители из Г-образной перфорированной трубы. Внутри содержится реагент, формирующий соленую среду. Последняя характеризуется высокой проводимостью и низкой температурой замерзания. Длинную часть заземлителя закапывают в неглубокую траншею, короткую выводят на поверхность. Ее используют трояко:

  • для подключения шины заземления;
  • для засыпки нового реагента;
  • для заливки воды (провоцирует химическую реакцию в засушливый период).

Другой современный вариант заземлителя — модульный. Состоит из множества секций, соединяемых резьбовым или иным способом. По мере забивания в грунт навинчиваются все новые и новые секции. Так что такой заземлитель, в отличие от классического из нескольких штырей, можно установить на любую глубину. Соединяют секции по особым правилам и с применением токопроводящей пасты. При забивании используют особую насадку, защищающую резьбу от повреждений. Модули выполнены из стали и покрыты медью или цинком, отчего их сопротивление падает, а срок службы увеличивается.

Электролитический и модульный заземлители стоят дорого, потому их традиционные аналоги остаются востребованными. Штыри в такой конструкции располагают по-разному:

  • в вершинах равностороннего треугольника рядом с объектом;
  • по углам объекта;
  • по периметру объекта.

Число стержней и расстояние между ними определяются расчетом.

Совокупная защита заземляющих устройств и предохранителей

Заземление не только отводит опасный ток, но при наличии аппарата защиты вызывает отключение аварийного оборудования. При контакте фазного проводника с заземленным корпусом сеть работает в режиме, близком к короткому замыканию (КЗ), сопровождающемся резким увеличением силы тока в цепи. На это реагирует выключатель автоматический (ВА), обязательно устанавливаемый на вводе электрической линии на объект.

Правда, подобное возможно лишь при очень низком сопротивлении заземлителя, что бывает крайне редко. В большинстве случаев вероятность отключения ВА довольно низкая. К примеру, при сопротивлении заземлителя в 10 Ом ток в цепи составит I = 220 / 10 = 22 А. Автоматы, согласно требованиям ГОСТ, выдерживают в течение часа ток, в 1,42 раза превышающий номинальное значение. То есть автомат на 16 А при силе тока в 22 А не отключится в течение почти 60-ти мин (16 * 1,42 = 22,72 А).

Более надежный автомат защиты — выключатель дифференциального тока или устройство предохранительного отключения (УЗО). Этот прибор сравнивает токи в фазном и нулевом проводниках и при обнаружении разницы, свидетельствующей об утечке, разъединяет цепь. По чувствительности, то есть минимальной величине утечки тока, вызывающей срабатывание, УЗО делятся на несколько категорий:

  1. Защищающие от поражения электротоком: 10 мА — устанавливаются в помещениях с высокой влажностью и 30 мА – в сухих.
  2. Противопожарные – на 100, 300 и 500 мА.

Противопожарные УЗО применяют на объектах, где короткое замыкание может вызвать пожар. Ими защищают участки сети, где поражение током практически исключено, например, цепи освещения.

Заземленное неэлектрическое оборудование

К заземлителю подключаются и конструкции, никак с электричеством не связанные:

  1. Ограждения и прочие конструкции на эстакадах и галереях, в которых при разряде молнии на близком расстоянии наводится опасная разность потенциалов. То же может произойти с трубопроводом или емкостью, содержащими горючее вещество. Из-за наведенного напряжения возможно искрение с последующим взрывом, потому такие конструкции также заземляют.
  2. Изделия, в которых в процессе эксплуатации накапливается статический заряд. В основном это трубопроводы и емкости: статическое электричество образуется из-за трения частиц транспортируемой среды. По этой причине ограничивают скорость подачи топлива в авиалайнеры.
  3. Трубопроводы значительной протяженности. В соответствии с законом электромагнитной индукции, в таких трубопроводах при изменении магнитного поля Земли, а оно всегда нестабильно под действием солнечного ветра, образуются так называемые блуждающие токи. Потому их подключают с определенным шагом к заземлителям.

Отличие от зануления

Занулением называют подключение токопроводящих частей электроустановки к глухозаземленной нейтрали источника тока (к нулевой жиле). Ее сопротивление намного меньше сопротивления заземлителя. Потому при замыкании фазы на зануленный корпус устройства гарантированно возникает ток КЗ, приводящий к срабатыванию автоматического выключателя.

В наиболее распространенной системе заземления типа TN одновременно осуществляется и заземление, и зануление.

О системах заземления

Применяют несколько систем заземления, обозначаемых комбинацией букв. Буквы имеют следующее значение:

  • I: изолированный проводник;
  • N: имеется подключение к глухозаземленной нейтрали;
  • Т: имеется подключение к заземляющему проводу.

Основных видов систем заземления три:

  1. Тип IT — система с изолированным нейтральным проводом. В данной системе провод заземления изолирован от нейтрали либо контактирует с ней через резистор с высоким номиналом или воздушный промежуток. В жилых домах не применяется. Предназначена для подключения приборов, предъявляющих особые требования к безопасности и стабильности. В основном используется в лабораториях и лечебных учреждениях.
  2. Тип TT — система с независимыми заземлителями. Оптимальный вариант для частных и хозяйственных строений. Предусматривает использование двух заземлителей — для источника электротока и металлических элементов системы, не имеющих защиты. Провод заземления (РЕ) в этой системе независим, а его работоспособность на участке между оборудованием и трансформатором улучшена. Возможны сложности при подборе диаметра для собственного заземлителя. Этот недостаток компенсируется путем устройства системы защитного отключения.
  3. Тип TN. Провод заземления в такой системе совмещен с нейтралью, потому при пробое фазы на корпус происходит КЗ и автомат разъединяет цепь. Этим обеспечивается высокий уровень безопасности.

Различные системы заземления

Системы TN получили наибольшее распространение. Есть три их подвида:

  1. TN-S: вариант с нулевым и разделенным рабочим проводником. С целью повышения безопасности вместо одного нулевого провода применяется два: один используется как защитный, второй — как нейтральный с подключением к глухозаземленной нейтрали. Такая система обеспечивает наилучшую защиту от поражения током.
  2. TN и TN-C-S: вариант с PEN-проводом и парой нулей. К оборудованию подключается нулевой провод, расщепленный на жилы PE и N.
  3. В TN-C-S после разделения устанавливается второй заземлитель, чем обеспечивается бесперебойная работа системы.

Достоинства системы TN:

  • устройство довольно простое;
  • осуществляется защита от разрядов молнии;
  • для защиты проводки достаточно установить автоматы от замыкания.
  • существует вероятность перегорания нуля снаружи с последующим пробоем металлических корпусов оборудования;
  • требуется оборудование для уравнивания потенциалов.

Система TN мало подходит для сельских населенных пунктов.

От правильности организации заземления подчас зависят жизни людей. Под организацией подразумевается не только устройство, но и своевременный контроль сопротивления заземлителя. Из-за окисления или изменения параметров грунта оно может оказаться завышенным, вследствие чего защитный эффект заземления будет утрачен.

Похожие статьи:

  • Таблица тока в обмотке от диаметра провода Еще раз о выборе сечения проводов Неоднократно поднимался вопрос о выборе сечения проводов, особенно в блоках питания. При этом умные люди настоятельно советовали исходить из плотности тока 1-2 А на мм 2 . Ни в коем случае не собираюсь […]
  • Если через поперечное сечение контактного провода Задачи. Сила тока, напряжение, сопротивление. Задачи. Сила тока, напряжение, сопротивление. Закон Ома для участка цепи. Просмотр содержимого документа «Задачи. Сила тока, напряжение, сопротивление.» Задачи. Сила тока, напряжение, […]
  • В катушке содержащей 500 витков провода магнитный поток «Явление электромагнитной индукции» Главная > Документ Домашняя работа №8 по теме «Явление электромагнитной индукции» За 2мс в замкнутом контуре магнитный поток равномерно убывает от 9 до 4 мВб. Найти ЭДС индукции в контуре. В замкнутом […]
  • Пускатель магнитный 18а катушка управления 220в Пускатель магнитный 9А катушка управления 220В АС 1НО+1НЗ LC1D (LC1D09M7) цена: 1 943,01 руб. Производитель: Schneider Electric/D Технический каталог кабельно-проводниковой и светотехнической продукции, электрооборудования, декоративного […]
  • Т-16 электропроводка Т-16 электропроводка Трактор Т-16. Электросхема трактора Трактор Т-16 оснащен электрическим оборудованием, согласно схеме, предназначенным для пуска дизеля, питания электрических приборов и устройств, обеспечения возможности работы в […]
  • Двигатель ул-062 схема подключения Двигатель ул-062 схема подключения Универсальные коллекторные электродвигатели УЛ06 предназначены для привода различных механизмов и аппаратов. Структура условного обозначения УЛ-06Х1Х24: УЛ - универсальный коллекторный электродвигатель с […]