Защита асинхронного двигателя от короткого замыкания

Виды электрической защиты асинхронных электродвигателей

Защита асинхронных электродвигателей

Асинхронные двигатели трехфазного переменного тока напряжением до 500 в при мощностях от 0,05 до 350 — 400 кВт являются наиболее распространенным видом электродвигателей.

Надежная и бесперебойная работа электродвигателей обеспечивается в первую очередь надлежащим выбором их по номинальной мощности, режиму работы и форме исполнения. Не меньшее значение имеет также соблюдение необходимых требований и правил при составлении электрической схемы, выборе пускорегулирующей аппаратуры, проводов и кабелей, монтаже и эксплуатации электропривода.

Аварийные режимы работы электродвигателей

Даже для правильно спроектированных и эксплуатируемых электроприводов при их работе всегда остается вероятность появления режимов, аварийных или ненормальных для двигателя и другого электрооборудования.

К аварийным режимам относятся :

1) многофазные (трех- и двухфазные) и однофазные короткие замыкания в обмотках электродвигателя; многофазные короткие замыкания в выводной коробке электродвигателя и во внешней силовой цепи (в проводах и кабелях, на контактах коммутационных аппаратов, в ящиках сопротивлений); короткие замыкания фазы на корпус или нулевой провод внутри двигателя или во внешней цепи — в сетях с заземленной нейтралью; короткие замыкания в цепи управления; короткие замыкания между витками обмотки двигателя (витковые замыкания).

Короткие замыкания являются наиболее опасными аварийными режимами в электроустановках. В большинстве случаев они возникают из-за пробоя или перекрытия изоляции. Токи короткого замыкания иногда достигают величин, в десятки и сотни раз превосходящих значения токов нормального режима, а их тепловое воздействие и динамические усилия, которым подвергаются токоведущие части, могут привести к повреждению всей электроустановки;

2) тепловые перегрузки электродвигателя из-за прохождения по его обмоткам повышенных токов: при перегрузках рабочего механизма по технологическим причинам, особо тяжелых условиях пуска двигателя под нагрузкой или его застопоривании, длительном понижении напряжения сети, выпадении одной из фаз внешней силовой цепи или обрыве провода в обмотке двигателя, механических повреждениях в двигателе или рабочем механизме, а также тепловые перегрузки при ухудшении условий охлаждения двигателя.

Тепловые перегрузки вызывают в первую очередь ускоренное старение и разрушение изоляции двигателя, что приводит к коротким замыканиям, т. е. к серьезной аварии и преждевременному выходу двигателя из строя.

Виды защиты асинхронных электродвигателей

Для того чтобы защитить электродвигатель от повреждений при нарушении нормальных условий работы, а также своевременно отключить неисправный двигатель от сети, предотвратив или ограничив тем самым развитие аварии, предусматриваются средства защиты.

Главным и наиболее действенным средством является электрическая защита двигателей, выполняемая в соответствии с «Правилами устройства электроустановок» (ПУЭ).

В зависимости от характера возможных повреждений и ненормальных режимов работы различают несколько основных наиболее распространенных видов электрической защиты асинхронных двигателей .

Защита асинхронных электродвигателей от коротких замыканий

Защита от коротких замыканий отключает двигатель при появлении в его силовой (главной) цепи или в цепи управления токов короткого замыкания.

Аппараты, осуществляющие защиту от коротких замыканий (плавкие предохранители, электромагнитные реле, автоматические выключатели с электромагнитным расцепителем), действуют практически мгновенно, т. е. без выдержки времени.

Защита асинхронных электродвигателей от перегрузки

Защита от перегрузки предохраняет двигатель от недопустимого перегрева, в частности и при сравнительно небольших по величине, но продолжительных тепловых перегрузках. Защита от перегрузки должна применяться только для электродвигателей тех рабочих механизмов, у которых возможны ненормальные увеличения нагрузки при нарушениях рабочего процесса.

Аппараты защиты от перегрузки (температурные и тепловые реле, электромагнитные реле, автоматические выключатели с тепловым расцепителем или с часовым механизмом) при возникновении перегрузки отключают двигатель с определенной выдержкой времени, тем большей, чем меньше перегрузка, а в ряде случаев, при значительных перегрузках, — и мгновенно.

Защита асинхронных электродвигателей от понижения или исчезновения напряжения

Защита от понижения или исчезновения напряжения (нулевая защита) выполняется с помощью одного или нескольких электромагнитных аппаратов, действует на отключение двигателя при перерыве питания или снижении напряжения сети ниже установленного значения и предохраняет двигатель от самопроизвольного включения после ликвидации перерыва питания или восстановления нормального напряжения сети.

Специальная защита асинхронных электродвигателей от работы на двух фазах предохраняет двигатель от перегрева, а также от «опрокидывания», т. е. остановки под током вследствие снижения момента, развиваемого двигателем, при обрыве в одной из фаз главной цепи. Защита действует на отключение двигателя.

В качестве аппаратов защиты применяются как тепловые, так и электромагнитные реле. В последнем случае защита может не иметь выдержки времени.

Другие виды электрической защиты асинхронных электродвигателей

Существуют и некоторые другие, реже встречающиеся виды защиты (от повышения напряжения, однофазных замыканий на землю в сетях с изолированной нейтралью, увеличения скорости вращения привода и т. п.).

Электрические аппараты, применяемые для защиты электродвигателей

Аппараты электрической защиты могут осуществлять один или сразу несколько видов защит. Так, некоторые автоматические выключатели обеспечивают защиту от коротких замыканий и от перегрузки. Одни из аппаратов защиты, например плавкие предохранители, являются аппаратами однократного действия и требуют замены или перезарядки после каждого срабатывания, другие, такие как электромагнитные и тепловые реле, — аппараты многократного действия. Последние различаются по способу возврата в состояние готовности на аппараты с самовозвратом и с ручным возвратом.

Выбор вида электрической защиты асинхронных электродвигателей

Выбор того или иного вида защиты или нескольких одновременно производится в каждом конкретном слу­чае с учетом степени ответственности привода, его мощности, условий работы и порядка обслуживания (наличия или отсутствия постоянного обслуживающего персонала).

Большую пользу может принести анализ данных по аварийности электрооборудования в цехе, на строительной площадке, в мастерской и т. п., выявление наиболее часто повторяющихся нарушений нормальной работы двигателей и технологического обору­дования. Всегда следует стремиться к тому, чтобы защита была по возможности простой и надежной в эксплуатации.

Для каждого двигателя независимо от его мощности и напряжения должна быть предусмотрена защита от коротких замыканий. Здесь нужно иметь в виду следующие обстоятельства. С одной стороны, защиту нужно отстроить от пусковых и тормозных токов двигателя, которые могут в 5—10 раз превышать его номинальный ток. С другой стороны, в ряде случаев коротких замыканий, например при витковых замыканиях, замыканиях между фазами вблизи от нулевой точки статорной обмотки, замыканиях на корпус внутри двигателя и т. п., защита должна срабатывать при токах, меньших пускового тока.

Одновременное выполнение этих противоречивых требований с помощью простых и дешевых средств защиты представляет большие трудности. Поэтому система защиты низковольтных асинхронных двигателей строится при сознательном допущении, что при некоторых отмеченных выше повреждениях в двигателе последний отключается защитой не сразу, а лишь в процессе развития этих повреждений, после того как значительно возрастет ток, потребляемый двигателем из сети.

Одно из важнейших требований к устройствам защиты двигателей — четкое действие ее при аварийных и ненормальных режимах работы двигателей и вместе с тем недопустимость ложных срабатываний. Поэтому аппараты защиты должны быть правильно выбраны и тщательно отрегулированы.

Защита электродвигателей.Схема защиты электродвигателя

При эксплуатации асинхронных электродвигателей, как и любого другого электрооборудования, могут возникнуть неполадки – неисправности, часто приводящие к аварийному режиму работы, повреждению двигателя. преждевременному выходу его из строя.

Прежде, чем перейти к способам защиты электродвигателей стоит рассмотреть основные и наиболее частые причины возникновения аварийной работы асинхронных электродвигателей:

Однофазные и межфазные короткие замыкания – в кабеле, клеммной коробке электродигателя, в обмотке статора (на корпус, межвитковые замыкания).

Короткие замыкания – наиболее опасный вид неисправности в электродвигателе, т. к. сопровождается возникновением очень больших токов, приводящих к перегреву и сгоранию обмоток статора.

Тепловые перегрузки электродвигателя – обычно возникают, когда вращение вала сильно затруднено (выход из строя пошипника, попадание мусора в шнек, запуск двигателя под слишком большой нагрузкой, либо его полная остановка).

Частой причиной тепловой перегрузки электродвигателя, приводящей к ненормальному режиму работы является пропадание одной из питающих фаз. Это приводит к значительному увеличению тока (в два раза превышающего номинальный) в статорных обмотках двух других фаз.

Результат тепловой перегрузки электродвигателя – перегрев и разрушение изоляции обмоток статора, приводящее к замыканию обмоток и негодности электродвигателя.

Защита электродвигателей от токовых перегрузок заключается в своевременном обесточивании электродвигателя при появлении в его силовой цепи или цепи управления больших токов, т. е. при возникновении коротких замыканий.

Для защиты электродвигателей от коротких замыканий применяют плавкие вставки, электромагнитные реле, автоматические выключатели с электромагнитным расцепителем, подобранные таким образом, чтобы они выдерживали большие пусковые сверхтоки, но незамедлительно срабатывали при возникновении токов короткого замыкания.

Для защиты электродвигателей от тепловых перегрузок в схему подключения электродвигателя включают тепловое реле, имеющее контакты цепи управления – через них подаётся напряжение на катушку магнитного пускателя.

При возникновении тепловых перегрузок эти контакты размыкаются, прерывая питание катушки, что приводит к возврату группы силовых контактов в исходное состояние – электродвигатель обесточен.

Простым и надёжным способом защиты электродвигателя от пропадания фаз будет добавление в схему его подключения дополнительного магнитного пускателя:

Включение автоматического выключателя 1 приводит к замыканию цепи питания катушки магнитного пускателя 2 (рабочее напряжение этой катушки должно быть

380 в) и замыканию силовых контактов 3 этого пускателя, через который (используется только один контакт) подаётся питание катушки магнитного пускателя 4.

Включением кнопки «Пуск» 6 через кнопку «Стоп» 8 замыкается цепь питания катушки 4 второго магнитного пускателя (её рабочее напряжение может быть как 380 так и 220 в), замыкаются его силовые контакты 5 и на двигатель подаётся напряжение.

При отпускании кнопки «Пуск» 6 напряжение с силовых контактов 3 пойдет через нормально разомкнутый блок-контакт 7, обеспечивая неразрывность цепи питания катушки магнитного пускателя.

Как видно из этой схемы защиты электродвигателя, при отсутствии по каким-то причинам одной из фаз напряжение на электродвигатель поступать не будет, что предотвратит его от тепловых перегрузок и преждевременный выход из строя.

Защита асинхронного двигателя от короткого замыкания

Асинхронные двигатели трехфазного переменного тока являются наиболее распространенным видом двигателей, применяемых в электроприводах самых различных отраслей народного хозяйства.

Надежная и бесперебойная работа двигателей в первую очередь зависит от надлежащего их выбора по мощности, режиму работы, а также не меньшее значение имеет соблюдение требований и правил составления электрической схемы, выбора пускорегулирующей аппаратуры, кабеля и т.д. Однако всегда остается вероятность появления аварийных или ненормальных режимов для двигателя и другого электрооборудования.

К этим режимам относятся:

  • Короткие замыкания: в обмотках двигателя; в выводной коробке двигателя и во внешней силовой цепи; фазы на корпус или нулевой провод внутри двигателя или во внешних цепях; цепи управления.
    Короткие замыкания являются наиболее опасными аварийными режимами в электроустановках, так как токи КЗ иногда достигают величин, в десятки и сотни раз превосходящих значения нормального режима, а их тепловое воздействие и динамическое усилие подвергающее токоведущие части может привести к повреждению всей электроустановки.
  • Тепловые перегрузки двигателя, вызывающие в первую очередь ускоренное старение и разрушение изоляции двигателя, что приводит к коротким замыканиям. Возникают при перегрузках рабочего механизма, тяжелых условиях пуска двигателя под нагрузкой, механические повреждение в двигателе или рабочем механизме, застопоривание ротора, длительное понижение напряжения питающей сети, обрыв одной из фаз внешней силовой цепи или провода в обмотке двигателя, а также ухудшение условий охлаждения.

В зависимости от характера возможных повреждений и ненормальных режимов работы различают несколько основных видов электрической защиты асинхронных двигателей:

    Защита от коротких замыканий. Защищают двигатель при появлении в его силовой цепи или цепях управления токов КЗ, отключая его практически мгновенно, то есть без выдержки времени.
    Аппараты защиты: плавкие предохранители, электромагнитные реле, автоматические выключатели с электромагнитным расцепителем.

Смотрите так же:  Провода для соединение акб

Защита от перегрузки. Защищает двигатель от недопустимого перегрева, отключая его от сети с определенной выдержкой времени (тем большей, чем меньше перегрузка).
Аппараты защиты: тепловые и температурные реле, электромагнитные реле, автоматические выключатели с тепловым расцепителем.

Защита от понижения или исчезновения напряжения. Отключения двигателя при перерыве питания или снижения напряжения сети ниже установленного значения и предохраняет двигатель от самопроизвольного включения после ликвидации перерыва питания и восстановления нормального напряжения сети. Выполняется с помощью одного или нескольких электромагнитных аппаратов.

Защита от работы на двух фазах. Предохраняет двигатель от перегрева, а также «опрокидывания», т.е. остановки под током вследствие снижения момента, развиваемого двигателем при обрыве одной из фаз главной цепи.
Аппараты защиты: как тепловые, так и электромагнитные реле.

  • Другие виды защиты: от повышения напряжения, однофазных замыканий на землю в сетях с изолированной нейтралью, увеличение скорости вращения привода и т.д.
  • ЗАЩИТА ОТ КОРОТКИХ ЗАМЫКАНИЙ

    Защита плавкими предохранителями.
    Это самый простой и дешевый способ защиты от коротких замыканий, получивший широкое применение, особенно в приводах с короткозамкнутыми асинхронными двигателями мощностью до 100 кВт. Основной недостаток — возможность неполнофазных отключений.

    На рис.1 показана схема включения плавких предохранителей для защиты главной цепи двигателя. Предохранители FU устанавливаются после рубильника SA во всех трех фазах (это необходимо для отключения обеих поврежденных фаз при двухфазных коротких замыканиях, а в сетях с заземленной нейтралью, кроме того, для отключения любой фазы при ее замыкании на землю) перед контактами пускателя или линейного контактора. Эти же предохранители в ряде случаев используются и для защиты от К.З. цепей управления, в которой включены катушки аппаратов, кнопки и т. п.

    Номинальные данные и характеристики предохранителей

    Номинальное напряжение предохранителя — это наибольшее номинальное напряжение цепей, в которых разрешается установка данного предохранителя.

    Номинальный ток плавкой вставки — наибольший ток, который вставка выдерживает неограниченно долгое время.

    Номинальный ток предохранителя — длительный ток, на который рассчитан предохранитель.

    Предельно отключаемый ток предохранителя — наибольший расплавляющий ток, при котором еще обеспечивается гашение дуги без каких-либо повреждений патрона предохранителя.

    Плавкая вставка перегорает тем быстрее, чем больший ток проходит через нее. Зависимость времени плавления вставки t от величины тока называется защитной характеристикой плавкой вставки.

    Предохранитель имеет невысокую «точность» работы. При одном и том же расплавляющем токе время плавления вставки зависит от многих причин: материала, сечения и длины вставки, состояния поверхности вставки и условия ее охлаждения, температура окружающего воздуха и т. п. Кроме того, с течением времени защитные свойства плавкой вставки неминуемо ухудшаются из-за ее старения.

    Защита электромагнитными максимальными токовыми реле.
    Электромагнитные максимальные токовые реле мгновенного действия (максимальные реле) применяются как аппараты защиты от КЗ для короткозамкнутых двигателей мощностью более 100 кВт, а также для большинства двигателей с фазным ротором. Максимальные реле служат чувствительным органом, а размыкание цепи производится контакторами, которые, следовательно, должны иметь необходимую отключающую способность.

    Этот вид защиты имеет преимущество перед плавкими предохранителями, так как обладает многократностью действия, обеспечивает отключение всех трех фаз главной цепи одновременно, позволяет осуществить четкую отстройку защиты от пусковых и тормозных токов двигателя без снижения быстродействия и надежности срабатывания ее даже при малых кратностях тока КЗ.

    Максимальное реле представляет собой электромагнитный механизм с подвижным якорем. Когда через катушку реле протекает ток, превышающий по величине определенное значение (ток срабатывания), якорь реле притягивается и связанный с ним контакт воздействует на отключение двигателя, например, размыкая цепь катушки контактора.

    На рис.2 приведена схема токовой отсечки без выдержки времени в трехфазном исполнении. Реле тока КА1. КА3 включены в каждую фазу статора. При срабатывании хотя бы одного реле размыкается соответствующий контакт КА1. КА3 в цепи катушки контактора КМ и электродвигатель отключается от сети. При выборе тока срабатывания коэффициент отсечки котс = 1,3…1,5, а коэффициент чувствительности kч > 2,0 при КЗ на выводах электродвигателя.

    ЗАЩИТА ОТ ПЕРЕГРУЗКИ

    От перегрузки двигатель сохраняет токовая защита, реагирующая на возрастание тока, а также температурная защита. Токовая защита выполняется электромеханическими, полупроводниковыми или электротепловыми реле. Защита двигателя от перегрузки должна срабатывать при кратковременных перегрузках, поэтому она имеет выдержку времени и может действовать на отключение, сигнал или разгрузку механизма двигателя.

    Защиту от перегрузки устанавливают, когда имеет место технологическая перегрузка или необходимо ограничить длительность пуска или самозапуска двигателей при пониженном напряжении. Защита от перегрузки, выполняемая с помощью электромагнитных реле, включает в себя реле тока и реле времени (КА4 и КТ на рис.2). Если защита должна отключать двигатель при обрыве фазы, то ее выполняют двухфазной. Двухфазной должна быть защита при наличии плавких предохранителей, используемых для защиты двигателей от КЗ.

    Реле не должно срабатывать в нормальном режиме работы двигателя и должно срабатывать при пусках двигателя, если пуск затянулся (tп.з > 3 с).

    При длительной перегрузке и затянувшемся пуске двигателя реле времени КТ успевает сработать и, размыкая контакт КТ в цепи катушки контактора КМ (см. рис.2), отключить двигатель.

    Защита от перегрузки, выполняемая с помощью тепловых расцепителей или электротепловых реле автоматических выключателей, получается наиболее эффективной, если Iрасц.ном = Iд.ном.

    На рис.3 показаны электротепловые реле для защиты от перегрузки. Эта защита предотвращает работу двигателя на двух фазах, поэтому магнитный пускатель состоит из двух тепловых реле КК. Номинальный ток электротеплового реле определяют по условию:

    где Iнг.ном — номинальный ток сменного нагревателя электротеплового реле.

    ЗАЩИТА ОТ ПОНИЖЕНИЯ ИЛИ ИСЧЕЗНОВЕНИЯ НАПРЯЖЕНИЯ

    Асинхронный двигатель нельзя оставлять в работе при длительных глубоких снижениях напряжения сети во избежание перегрева, особенно если двигатель полностью нагружен.

    После отключения по КЗ происходит самозапуск электродвигателей, подключенных к секции или системе шин, на которых во время КЗ имело место снижение напряжения. Токи самозапуска, в несколько раз превышающие номинальные, проходят по питающим линиям (или трансформаторам) собственных нужд. В результате напряжение на шинах собственных нужд, а следовательно, и на электродвигателях понижается настолько, что вращающий момент на валу электродвигателя может оказаться недостаточным для его проворота. Самозапуск электродвигателей может не произойти, если напряжение на шинах окажется ниже 55-65 % Iном.

    Для того чтобы обеспечить пуск наиболее ответственных электродвигателей, устанавливается защита минимального напряжения, отключающая неответственные электродвигатели, отсутствие которых в течение некоторого времени не отразится на производственном процессе. При этом уменьшается суммарный ток самозапуска и повышается напряжение на шинах собственных нужд, благодаря чему обеспечивается самозапуск ответственных электродвигателей.

    В некоторых случаях при длительном отсутствии напряжения защита минимального напряжения отключает и ответственные электродвигатели. Это необходимо, в частности, для пуска схемы АВР электродвигателей, а также по технологии производства. Так, например, в случае остановки всех дымососов необходимо отключить мельничные и дутьевые вентиляторы и питатели пыли; в случае остановки дутьевых вентиляторов — мельничные вентиляторы и питатели пыли. Отключение ответственных электродвигателей защитой минимального напряжения производится также в тех случаях, когда их самозапуск недопустим по условиям техники безопасности или из-за опасности повреждения приводимых механизмов.

    Для этих целей и предусматривается защита от понижения или исчезновения напряжения, называемая обычно нулевой защитой. Аппаратами этой защиты являются контакторы, магнитные пускатели и специально установленные электромагнитные реле напряжения.

    При питании главной цепи и цепи управления от одной сети (например, схемы рис.2 и 3) и кнопочном управлении нулевая защита осуществляется контактором или магнитным пускателем КМ. Действительно, при исчезновении напряжения в сети контактор КМ отпадает, а включение его вновь возможно лишь после нажатия кнопки «Пуск» (SB1) при условии, что напряжение сети будет не меньше 0,85Uн.с. Объясняется это тем, что контакторы переменного тока и магнитные пускатели имеют напряжение надежного срабатывания не менее 0,85Uн.с. Напряжение возврата у них обычно не превышает (0,4-0,5)Uн.с.

    В схемах управления с командоконтроллером (обычно для двигателей с фазным ротором) нулевая защита выполняется с помощью реле РН (рис.4). В исходном положении рукоятки командоконтроллера КК катушка реле РН обтекается током и контакт РН замкнут. При переводе командоконтроллера в любое рабочее положение контакт КК размыкается и катушка РН и вся остальная аппаратура получают питание теперь только через контакт РН. Когда напряжение в сети исчезает или резко падает (а также при срабатывании максимальных реле КА), реле РН размыкает свой контакт. Повторное включение двигателя возможно лишь после установки командоконтроллера в исходное положение. Тем самым предовращается самозапуск двигателя.

    Иногда цепь управления питается от сети переменного тока, не зависимой от сети, питающей главную цепь двигателя (обычно при напряжении главной цепи 380-500В). В таких схемах нулевая защита главной цепи осуществляется с помощью реле РН1 (рис.4,б), а нулевая защита цеп управления обеспечивается контактором КМ (рис.4,в) или реле РН2 (рис.4,г). На рис.4,г показан вариант включения реле РН2 для сложных схем управления с несколькими командоконтроллерами, пакетными выключателями и другими аппаратами ручного управления. В обеих схемах двигатель может быть включен только при наличии напряжения как в главной цепи, так и в цепи управления. Так как при перерыве питания в главной цепи контакты реле РН1 размыкаются, что приводит к отключению контактора КМ (или реле РН2), самозапуск двигателя становится невозможным. В схеме 4,г перед запуском двигателя нужно предварительно нажать кнопку «Подготовка пуска».

    Аналогично выполняется нулевая защита в тех случаях, когда цепь управления питается от сети постоянного тока. Такие схемы применяются для электроприводов повторно-кратковременного режима с большой частотой включений, недопустимой для контакторов с управлением на переменном токе и магнитных пускателей.

    ЗАЩИТА ОТ РАБОТЫ НА ДВУХ ФАЗАХ

    Работа двигателя на двух фазах — явление, встречающееся довольно часто. Однако следует подчеркнуть, что внимание электриков в первую очередь должно быть обращено на не на устройство специальной защиты двигателей от двухфазной работы, а на ликвидацию причин, порождающих такие режимы. Прежде всего нужно добиваться улучшения качества ремонта двигателей и аппаратуры управления, повышать общую культуру эксплуатации электроустановок.

    «Правила устройства электроустановок» допускают применение специальной защиты от работы на двух фазах (от потери фазы) лишь в порядке исключения для двигателей, защищенных только плавкими предохранителями, то есть не оборудованными тепловой защитой.

    В трехфазной силовой цепи при перегорании одного предохранителя возможна работа на двух фазах (рис.5), что приводит к перегреванию двигателей. При нормальной трехфазной работе двигателя напряжение на реле напряжения KV равно нулю. При обрыве фазы появляется напряжение на реле KV, которое срабатывает и размыкает свой контакт в цепи питания контактора КМ, что приводит к отключению двигателя от сети.

    Хорошо отстроенная тепловая защита вполне надежно защищает электродвигатель от потери фазы, если нагрузка на валу не менее 65-70% номинальной и нагревательный элемент выбран по номинальному току электродвигателя. В случае соединения обмоток в звезду при обрыве фазы ток статора возрастет в 1,7-2 раза и будет составлять (1,2-1,4) / Iн двигателя, что вполне достаточно для надежного срабатывания реле.

    Если двигатель работал при нагрузке, меньшей чем 50% номинальной и произошла потеря фазы, то ток не превысит номинального и двигатель может продолжать работать. Потеря фазы при полной нагрузке может привести к «опрокидыванию» двигателя, то есть его полному торможению. Запуск на двух фазах даже при отсутствии нагрузки невозможен. Как в первом, так и во втором случае по обмоткам заторможенного двигателя будет проходить ток, равный примерно 87% пускового тока трехфазного режима. Тепловая защита сработает за 10-15 с и исключит перегрев обмоток.

    Применяя правильно отстроенные автоматы и тепловые реле в магнитных пускателях, а также периодически проверяя их контактные системы, можно уменьшить вероятность появления подобных режимов работы электродвигателя и обеспечить надежную защиту.

    Смотрите так же:  Магистральная схема соединения

    Защита электродвигателя. Виды, схемы, принцип действия защиты электродвигателя.

    Для чего нужна защита двигателя?

    Для того чтобы избежать непредвиденных сбоев, дорогостоящего ремонта и последующих потерь из-за простоя электродвигателя, очень важно оборудовать двигатель защитным устройством.

    Защита двигателя имеет три уровня:

    Внешняя защита от короткого замыкания установки. Устройства внешней защиты, как правило, являются предохранителями разных видов или реле защиты от короткого замыкания. Защитные устройства данного типа обязательны и официально утверждены, они устанавливаются в соответствии с правилами безопасности.

    Внешняя защита от перегрузок, т.е. защита от перегрузок двигателя насоса, а, следовательно, предотвращение повреждений и сбоев в работе электродвигателя. Это защита по току.

    Встроенная защита двигателя с защитой от перегрева, чтобы избежать повреждений и сбоев в работе электродвигателя. Для встроенного устройства защиты всегда требуется внешний выключатель, а для некоторых типов встроенной защиты двигателя требуется даже реле перегрузки.

    Возможные условия отказа двигателя

    Во время эксплуатации могут возникать различные неисправности. Поэтому очень важно заранее предусмотреть возможность сбоя и его причины и как можно лучше защитить двигатель. Далее приведён перечень условий отказа, при которых можно избежать повреждений электродвигателя:

    • Низкое качество электроснабжения:

    • Несбалансированное напряжение/ ток (скачки)

    • Неверный монтаж, нарушение условий хранения или неисправность самого электродвигателя

    • Постепенное повышение температуры и выход её за допустимый предел:

    • высокая температура окружающей среды

    • пониженное атмосферное давление (работа на большой высоте над уровнем моря)

    • высокая температура рабочей жидкости

    • слишком большая вязкость рабочей жидкости

    • частые включения/отключения электродвигателя

    • слишком большой момент инерции нагрузки (свой для каждого насоса)

    • Резкое повышение температуры:

    Для защиты сети от перегрузок и короткого замыкания при возникновении каких-либо из перечисленных выше условий отказа необходимо определить, какое устройство защиты сети будет использоваться. Оно должно автоматически отключать питание от сети. Плавкий предохранитель является простейшим устройством, выполняющим две функции. Как правило, плавкие предохранители соединяются между собой при помощи аварийного выключателя, который может отключить двигатель от сети питания. На следующих страницах мы рассмотрим три типа плавких предохранителей с точки зрения их принципа действия и вариантов применения: плавкий предохранительный выключатель, быстродействующие плавкие предохранители и предохранители с задержкой срабатывания.

    Плавкий предохранительный выключатель

    Плавкий предохранительный выключатель — это аварийный выключатель и плавкий предохранитель, объединённые в едином корпусе. С помощью выключателя можно размыкать и замыкать цепь вручную, в то время как плавкий предохранитель защищает двигатель от перегрузок по току. Выключатели, как правило, используются в связи с выполнением сервисного обслуживания, когда необходимо прервать подачу тока.

    Аварийный выключатель имеет отдельный кожух. Этот кожух защищает персонал от случайного контакта с электрическими клеммами, а также защищает выключатель от окисления. Некоторые аварийные выключатели оборудованы встроенными плавкими предохранителями, другие аварийные выключатели поставляются без встроенных плавких предохранителей и оснащены только выключателем.

    Устройство защиты от перегрузок по току (плавкий предохранитель) должно различать перегрузки по току и короткое замыкание. Например, незначительные кратковременные перегрузки по току вполне допустимы. Но при дальнейшем увеличении тока устройство защиты должно срабатывать немедленно. Очень важно сразу предотвращать короткие замыкания. Выключатель с предохранителем — пример устройства, используемого для защиты от перегрузок по току. Правильно подобранные плавкие предохранители в выключателе размыкают цепь при токовых перегрузках.

    Плавкие предохранители быстрого срабатывания

    Быстродействующие плавкие предохранители обеспечивают отличную защиту от короткого замыкания. Однако кратковременные перегрузки, такие как пусковой ток электродвигателя, могут вызвать поломку плавких предохранителей такого вида. Поэтому быстродействующие плавкие предохранители лучше всего использовать в сетях, которые не подвержены действию значительных переходных токов. Обычно такие предохранители выдерживают около 500% своего номинального тока в течение одной четвёртой секунды. По истечении этого времени вставка предохранителя плавится и цепь размыкается. Таким образом, в цепях, где пусковой ток часто превышает 500% номинального тока предохранителя, быстродействующие плавкие предохранители использовать не рекомендуется.

    Плавкие предохранители с задержкой срабатывания

    Данный тип плавких предохранителей обеспечивает защиту и от перегрузки, и от короткого замыкания. Как правило, они допускают 5-кратное увеличение номинального тока на 10 секунд, и даже более высокие значения тока на более короткое время. Обычно этого достаточно, чтобы электродвигатель был запущен и плавкий предохранитель не открылся. С другой стороны, если возникают перегрузки, которые продолжаются больше, чем время плавления плавкого элемента, цепь также разомкнётся.

    Время срабатывания плавкого предохранителя

    Время срабатывания плавкого предохранителя — это время плавления плавкого элемента (проволоки), которое требуется для того, чтобы цепь разомкнулась. У плавких предохранителей время срабатывания обратно пропорционально значению тока — это означает, что чем больше перегрузки по току, тем меньше период времени для отключения цепи.

    В общем, можно сказать, что у электродвигателей насосов очень короткое время разгона: меньше 1 секунды. В этой связи для электродвигателей подойдут предохранители с задержкой времени срабатывания с номинальным током, соответствующим току полной нагрузки электродвигателя.

    Иллюстрация справа демонстрирует принцип формирования характеристики времени срабатывания плавкого предохранителя. Ось абсцисс показывает соотношение между фактическим током и током полной нагрузки: если электродвигатель потребляет ток полной нагрузки или меньше, плавкий предохранитель не размыкается. Но при величине тока, в 10 раз превышающей ток полной нагрузки, плавкий предохранитель разомкнётся практически мгновенно (0,01 с). На оси ординат отложено время срабатывания.

    Во время пуска через индукционный электродвигатель проходит достаточно большой ток. В очень редких случаях это приводит к выключению посредством реле или плавких предохранителей. Для уменьшения пускового тока используются различные методы пуска электродвигателя.

    Что такое автоматический токовый выключатель и как он работает?

    Автоматический токовый выключатель является устройством защиты от перегрузок по току. Он автоматически размыкает и замыкает цепь при заданном значении перегрузки по току. Если токовый выключатель применяется в диапазоне своих рабочих параметров, размыкание и замыкание не наносит ему никакого ущерба. Сразу же после возникновения перегрузки можно легко возобновить работу автоматического выключателя — он просто устанавливается в исходное положение.

    Различают два вида автоматических выключателей: тепловые и магнитные.

    Тепловые автоматические выключатели

    Тепловые автоматические выключатели — это самый надёжный и экономичный тип защитных устройств, которые подходят для электродвигателей. Они могут выдержать большие амплитуды тока, которые возникают при пуске электродвигателя, и защищают электродвигатель от сбоев, таких как блокировка ротора.

    Магнитные автоматические выключатели

    Магнитные автоматические выключатели являются точными, надёжными и экономичными. Магнитный автоматический выключатель устойчив к изменениям температуры, т.е. изменения температуры окружающей среды не влияют на его предел срабатывания. По сравнению с тепловыми автоматическими выключателями, магнитные автоматические выключатели имеют более точно определённое время срабатывания. В таблице приведены характеристики двух типов автоматических выключателей.

    Рабочий диапазон автоматического выключателя

    Автоматические выключатели различаются между собой уровнем тока срабатывания. Это значит, что всегда следует выбирать такой автоматический выключатель, который может выдержать самый высокий ток короткого замыкания, который может возникнуть в данной системе.

    Функции реле перегрузки

    • При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.

    • Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.

    • Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.

    IEC и NEMA стандартизуют классы срабатывания реле перегрузки.

    Обозначение класса срабатывания

    Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Для любого стандарта (NEMA или IEC) деление изделий на классы определяет, какой период времени требуется реле на размыкание при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифровое обозначение отражает время, необходимое реле для срабатывания. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее при 600% тока полной нагрузки, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 — в течение 30 секунд и менее.

    Угол наклона характеристики срабатывания зависит от класса защиты электродвигателя. Электродвигатели IEC обычно адаптированы к определённому варианту использования. Это означает, что реле перегрузки может справляться с избыточным током, величина которого очень близка к максимальной производительности реле. Класс 10 — самый распространённый класс для электродвигателей IEC. Электродвигатели NEMA имеют внутренний конденсатор большей ёмкости, поэтому класс 20 для них применяется чаще.

    Реле класса 10 обычно используется для электродвигателей насосов, так как время разгона электродвигателей составляет около 0,1-1 секунды. Для многих высокоинерционных промышленных нагрузок необходимо для срабатывания реле класса 20.

    Сочетание плавких предохранителей с реле перегрузки

    Плавкие предохранители служат для того, чтобы защитить установку от повреждений, которые могут быть вызваны коротким замыканием. В связи с этим плавкие предохранители должны иметь достаточную ёмкость. Более низкие токи изолируются с помощью реле перегрузки. Здесь номинальный ток плавкого предохранителя соответствует не рабочему диапазону электродвигателя, а току, который может повредить наиболее слабые составляющие установки. Как было упомянуто ранее, плавкий предохранитель обеспечивает защиту от короткого замыкания, но не защиту от перегрузок при низком токе.

    На рисунке представлены наиболее важные параметры, формирующие основу согласованной работы плавких предохранителей в сочетании с реле перегрузки.

    Очень важно, чтобы плавкий предохранитель сработал прежде, чем другие детали установки получат тепловое повреждение в результате короткого замыкания.

    Современные наружные реле защиты двигателя

    Усовершенствованные наружные системы защиты двигателя также обеспечивают защиту от перенапряжения, перекоса фаз, ограничивают число включений/выключений, устраняют вибрации. Кроме того, они позволяют контролировать температуру статора и подшипников через датчик температуры (PT100), измерять сопротивление изоляции и регистрировать температуру окружающей среды. В дополнение к этому усовершенствованные наружные системы защиты двигателя могут принимать и обрабатывать сигнал от встроенной тепловой защиты. Далее в этой главе мы рассмотрим устройство тепловой защиты.

    Наружные реле защиты двигателя предназначены для защиты трёхфазных электродвигателей при угрозе повреждения двигателя за короткий или более длительный период работы. Кроме защиты двигателя, наружное реле защиты имеет ряд особенностей, которые обеспечивают защиту электродвигателя в различных ситуациях:

    • Подаёт сигнал прежде, чем возникает неисправность в результате всего процесса

    • Диагностирует возникшие неисправности

    • Позволяет выполнять проверку работы реле во время техобслуживания

    • Контролирует температуру и наличие вибрации в подшипниках

    Можно подключить реле перегрузки к центральной системе управления зданием для постоянного контроля и оперативной диагностики неисправностей. Если в реле перегрузки установлено наружное реле защиты, сокращается период вынужденного простоя из-за прерывания технологического процесса в результате поломки. Это достигается благодаря быстрому обнаружению неисправности и недопущению повреждений электродвигателя.

    Например, электродвигатель может быть защищён от:

    • Частых повторных пусков

    • Замыкания на массу

    • Перегрева (с помощью сигнала, поступающего от электродвигателя через датчик PT100 или терморезисторы)

    • Предупреждающего сигнала о перегрузке

    Настройка наружного реле перегрузки

    Ток полной нагрузки при определённом напряжении, указанном в фирменной табличке, является нормативом для настройки реле перегрузки. Так как в сетях разных стран присутствует различное напряжение, электродвигатели для насосов могут использоваться как при 50 Гц, так и при 60 Гц в широком диапазоне напряжений. В связи с этим в фирменной табличке электродвигателя указывается диапазон тока. Если нам известно напряжение, мы можем вычислить точную допустимую нагрузку по току.

    Пример вычисления

    Зная точную величину напряжения для установки, можно рассчитать ток полной нагрузки при 254 / 440 Y B, 60 Гц.

    Данные отображаются в фирменной табличке, какпоказано в иллюстрации.

    Вычисления для 60 Гц

    Коэффициент усиления напряжения определяется следующими уравнениями:

    Расчет фактического тока полной нагрузки (I):

    (Значения тока для подключения по схеме «треугольник» и «звезда» при минимальных значениях напряжения)

    (Значения тока для подключения по схеме «треугольник» и «звезда» при максимальных значениях напряжения)

    Теперь с помощью первой формулы можно рассчитать ток полной нагрузки:

    I для «треугольника»:

    Смотрите так же:  Алёнушка гудели в небе провода

    Величины для тока полной нагрузки соответствуют допустимому значению тока полной нагрузки электродвигателя при 254 Δ/440 Y В, 60 Гц.

    Внимание: наружное реле перегрузки электродвигателя всегда устанавливается на номинальное значение тока, указанное в фирменной табличке.

    Однако если электродвигатели сконструированы с учётом коэффициента нагрузки, который затем указывается в фирменной табличке, напр., 1.15, заданное значение тока для реле перегрузки может быть увеличено на 15% по сравнению с током полной нагрузки или коэффициентом нагрузки в амперах (SFA — service factor amps), который, как правило, указывается в фирменной табличке.

    Внутренняя защита, встраиваемая в обмотки или клеммную коробку

    Для чего нужна встроенная защита двигателя, если электродвигатель уже оснащён реле перегрузки и плавкими предохранителями? В некоторых случаях реле перегрузки не регистрирует перегрузку электродвигателя. Например, в ситуациях:

    • Когда электродвигатель закрыт (недостаточно охлаждается) и медленно нагревается до опасной температуры.

    • При высокой температуре окружающей среды.

    • Когда наружная защита двигателя настроена на слишком высокий ток срабатывания или установлена неправильно.

    • Когда электродвигатель перезапускается несколько раз в течение короткого периода времени и пусковой ток нагревает электродвигатель, что в конечном счёте, может его повредить.

    Уровень защиты, который может обеспечить внутренняя защита, указывается в стандарте IEC 60034-11.

    Обозначение TP

    TP — аббревиатура «thermal protection» — тепловая защита. Существуют различные типы тепловой защиты, которые обозначаются кодом TP (TPxxx). Код включает в себя:

    • Тип тепловой перегрузки, для которой была разработана тепловая защита (1-я цифра)

    • Число уровней и тип действия (2-я цифра)

    • Категорию встроенной тепловой защиты (3-я цифра)

    В электродвигателях насосов, самыми распространёнными обозначениями TP являются:

    TP 111: Защита от постепенной перегрузки

    TP 211: Защита как от быстрой, так и от постепенной перегрузки.

    Обозначение

    Техническая егрузка и ее варианты (1-я цифра)

    Количество уровней и функциональная область (2-я цифра)

    Категория 1 (3-я цифра)

    ТР 111

    Только медленно (постоянная перегрузка)

    1 уровень при отключении

    1

    ТР 112

    2

    ТР 121

    2 уровня при аварийном сигнале и отключении

    1

    ТР 122

    2

    ТР 211

    Медленно и быстро (постоянная перегрузка, блокировка)

    1 уровень при отключении

    1

    ТР 212

    2

    ТР 221 ТР 222

    2 уровня при аварийном сигнале и отключении

    1

    2

    ТР 311 ТР 321

    Только быстро (блокировка)

    1 уровень при отключении

    1

    2

    Изображение допустимого температурного уровня при воздействии на электродвигатель высокой температуры. Категория 2 допускает более высокие температуры, чем категория 1.

    Все однофазные электродвигатели Grundfos оснащены защитой двигателя по току и температуре в соответствии с IEC 60034-11. Тип защиты двигателя TP 211 означает, что она реагирует как на постепенное, так и на быстрое повышение температуры.

    Сброс данных в устройстве и возврат в начальное положение осуществляется автоматически. Трёхфазные электродвигатели Grundfos MG мощностью от 3.0 кВт стандартно оборудованы датчиком температуры PTC.

    Эти электродвигатели были испытаны и одобрены как электродвигатели TP 211, которые реагируют и на медленное, и на быстрое повышение температуры. Другие электродвигатели, используемые для насосов Grundfos (MMG модели D и E, Siemens, и т.п.), могут быть классифицированы как TP 211, но, как правило, они имеют тип защиты TP 111.

    Необходимо всегда учитывать данные, указанные на фирменной табличке. Информацию о типе защиты конкретного электродвигателя можно найти на фирменной табличке — маркировка с буквенным обозначением TP (тепловая защита) согласно IEC 60034-11. Как правило, внутренняя защита может быть организована при помощи двух типов устройств защиты: Устройств тепловой защиты или терморезисторов.

    Устройства тепловой защиты, встраиваемые в клеммную коробку

    В устройствах тепловой защиты, или термостатах, используется биметаллический автоматический выключатель дискового типа мгновенного действия для размыкания и замыкания цепи при достижении определённой температуры. Устройства тепловой защиты называют также «кликсонами» (по названию торговой марки от Texas Instruments). Как только биметаллический диск достигает заданной температуры, он размыкает или замыкает группу контактов в подключённой схеме управления. Термостаты оснащены контактами для нормально разомкнутого или нормально замкнутого режима работы, но одно и то же устройство не может использоваться для двух режимов. Термостаты предварительно откалиброваны производителем, и их установки менять нельзя. Диски герметично изолированы и располагаются на контактной колодке.

    Через термостат может подаваться напряжение в цепи аварийной сигнализации — если он нормально разомкнут, или термостат может обесточивать электродвигатель — если он нормально замкнут и последовательно соединён с контактором. Так как термостаты находятся на наружной поверхности концов катушки, то они реагируют на температуру в месте расположения. Применительно к трёхфазным электродвигателям термостаты считаются нестабильной защитой в условиях торможения или в других условиях быстрого изменения температуры. В однофазных электродвигателях термостаты служат для защиты при блокировке ротора.

    Тепловой автоматический выключатель, встраиваемый в обмотки

    Устройства тепловой защиты могут быть также встроены в обмотки, см. иллюстрацию.

    Они действуют как сетевой выключатель как для однофазных, так и для трёхфазных электродвигателей. В однофазных электродвигателях мощностью до 1,1 кВт устройство тепловой защиты устанавливается непосредственно в главном контуре, чтобы оно выполняло функцию устройства защиты на обмотке. Кликсон и Термик — примеры тепловых автоматических выключателей. Эти устройства называют также PTO (Protection Thermique a Ouverture).

    Внутренняя установка

    В однофазных электродвигателях используется один одинарный тепловой автоматический выключатель. В трёхфазных электродвигателях — два последовательно соединённых выключателя, расположенных между фазами электродвигателя. Таким образом, все три фазы контактируют с тепловым выключателем. Тепловые автоматические выключатели можно установить на конце обмоток, однако это приводит к увеличению времени реагирования. Выключатели должны быть подключены к внешней системе управления. Таким образом электродвигатель защищается от постепенной перегрузки. Для тепловых автоматических выключателей реле — усилителя не требуется.

    Тепловые выключатели НЕ ЗАЩИЩАЮТ двигатель при блокировке ротора.

    Принцип действия теплового автоматического выключателя

    На графике справа показана зависимость сопротивления от температуры для стандартного теплового автоматического выключателя. У каждого производителя эта характеристика своя. TN обычно лежит в интервале 150-160 °C.

    Подключение

    Подключение трёхфазного электродвигателя со встроенным тепловым выключателем и реле перегрузки.

    Обозначение TP на графике

    Защита по стандарту IEC 60034-11:

    TP 111 (постепенная перегрузка). Для того чтобы обеспечить защиту при блокировке ротора, электродвигатель должен быть оборудован реле перегрузки.

    Терморезисторы, встраиваемые в обмотки

    Второй тип внутренней защиты — это терморезисторы, или датчики с положительным температурным коэффициентом (PTC). Терморезисторы встраиваются в обмотки электродвигателя и защищают его при блокировке ротора, продолжительной перегрузке и высокой температуре окружающей среды. Тепловая защита обеспечивается с помощью контроля температуры обмоток электродвигателя с помощью PTC датчиков. Если температура обмоток превышает температуру отключения, сопротивление датчика меняется соответственно изменению температуры.

    В результате такого изменения внутренние реле обесточивают контур управления внешнего контактора. Электродвигатель охлаждается, и восстанавливается приемлемая температура обмотки электродвигателя, сопротивление датчика понижается до исходного уровня. В этот момент происходит автоматическое приведение модуля управления в исходное положение, если только он предварительно не был настроен на сброс данных и повторное включение вручную.

    Если терморезисторы установлены на концах катушки самостоятельно, защиту можно классифицировать только как TP 111. Причина в том, что терморезисторы не имеют полного контакта с концами катушки, и, следовательно, не могут реагировать так быстро, как если бы они изначально были встроены в обмотку.

    Система, чувствительная к температуре терморезистора, состоит из датчиков с положительным температурным коэффициентом (PTC), устанавливаемых последовательно, и твердотельного электронного выключателя в закрытом блоке управления. Набор датчиков состоит из трёх — по одному на фазу. Сопротивление в датчике остаётся относительно низким и постоянным в широком диапазоне температур, с резким увеличением при температуре срабатывания. В таких случаях датчик действует как твердотельный тепловой автоматический выключатель и обесточивает контрольное реле. Реле размыкает цепь управления всего механизма для отключения защищаемого оборудования. Когда температура обмотки восстанавливается до допустимого значения, блок управления можно привести в прежнее положение вручную.

    Все электродвигатели Grundfos мощностью от 3 кВт и выше оснащены терморезисторами. Система терморезисторов с положительным температурным коэффициентом (PTC) считается устойчивой к отказам, так как в результате выхода из строя датчика или отсоединении провода датчика возникает бесконечное сопротивление, и система срабатывает так же, как при повышении температуры, — происходит обесточивание контрольного реле.

    Принцип действия терморезистора

    Критические значения зависимости сопротивление/ температура для датчиков системы защиты электродвигателя определены в стандартах DIN 44081/ DIN 44082.

    На кривой DIN показано сопротивление в датчиках терморезистора в зависимости от температуры.

    По сравнению с PTO терморезисторы имеют следующие преимущества:

    • Более быстрое срабатывание благодаря меньшему объёму и массе

    • Лучше контакт с обмоткой электродвигателя

    • Датчики устанавливаются на каждой фазе

    • Обеспечивают защиту при блокировке ротора

    Обозначение TP для электродвигателя с PTC

    Защита двигателя TP 211 реализуется, только когда терморезисторы PTC полностью установлены на концах обмоток на заводе-изготовителе. Защита TP 111 реализуется только при самостоятельной установке на месте эксплуатации. Электродвигатель должен пройти испытания и получить подтверждение о соответствии его маркировке TP 211. Если электродвигатель с терморезисторами PTC имеет защиту TP 111, он должен быть оснащён реле перегрузки для предотвращения последствий заклинивания.

    Соединение

    На рисунках справа представлены схемы подключения трёхфазного электродвигателя, оснащённого терморезисторами PTC, с расцепителями Siemens. Для реализации защиты как от постепенной, так и от быстрой перегрузки, мы рекомендуем следующие варианты подключения электродвигателей, оснащённых датчиками PTC, с защитой TP 211 и TP 111.

    Электродвигатели с защитой TP 111

    Если электродвигатель с терморезистором имеет маркировку TP 111, это значит, что электродвигатель защищён только от постепенной перегрузки. Для того чтобы защитить электродвигатель от быстрой перегрузки, электродвигатель должен быть оборудован реле перегрузки. Реле перегрузки должно подключаться последовательно к реле PTC.

    Электродвигатели с защитой TP 211

    Защита TP 211 двигателя обеспечивается, только если терморезистор PTC полностью встроен в обмотки. Защита TP 111 реализуется только при самостоятельном подключении.

    Терморезисторы разработаны в соответствии со стандартом DIN 44082 и выдерживают нагрузку Umax 2,5 В DC. Все отключающие элементы предназначены для приёма сигналов от терморезисторов DIN 44082, т.е терморезисторов компании Siemens.

    Обратите внимание: Очень важно, чтобы встроенное устройство PTC было последовательно соединено с реле перегрузки. Многократные повторные включения реле перегрузки могут привести к сгоранию обмотки в случае блокировки электродвигателя или пуска при высокой инерции. Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле

    Похожие статьи:

    • Длина пролета провода сип Форум / Электрика / Длина пролета СИП 2А 2х16 natchen ученик Длина пролета СИП 2А 2х16 22 июня 2007 г., 15:24 Энергонадзор сделал замечание: Не предъявлено обоснование применения пролета СИП более 30 метров без дополнительной […]
    • Продажа провода в перми Провод в Перми Доставка провода в Пермь и по Пермского края производится любыми транспортными компаниями (доставка от нашего склада до терминала транспортной компании в Перми бесплатна). По телефону 8 800 350 51 86 вы можете узнать […]
    • Прибор для измерения частоты тока Приборы для измерения частоты и сопротивления - Испытание электрических машин Приборы для измерения частоты. В практике испытаний ЭМ приходится измерять частоты в довольно широком диапазоне примерно от 1 Гц до 60 кГц. Для этих целей […]
    • Измерение сопротивления изоляции переносного электроинструмента Измерение сопротивления изоляции переносного электроинструмента Вопрос 29. Порядок испытания электрической прочности изоляции переносного электроинструмента. Переносной электроинструмент подлежит периодической проверке не реже одного раза […]
    • Зажим анкерный для провода сип 2х16 Зажим анкерный DN-123 для кабеля СИП 2х16-25, 4х16-25 Анкерный зажим DN-123 фирмы Нилед Анкерный зажим DN-123 используются для абонентских ответвлений двумя или четырьмя проводами одинакового сечения. Конструкция: термопластик, усиленый […]
    • Почему бензогенератор не выдает 220 вольт Бензиновые генераторы выдают большое напряжение. Имеются два бензогенератора Fubag TI-2000 и 1 киловатный, Китайский, с 4-х тактным двигателем. Оба выдают напряжение от 300 вольт до 400 вольт. Fubag TI-2000 стал жить какой то своей […]