Заземление нуль система

Какие бывают системы заземления?

TN и ее разновидности

Самый распространенный тип заземляющей системы — это TN, в котором ноль совмещен с землей по всей длине. Этот тип еще называют в снабжении глухозаземленная нейтраль, когда условный ноль N источника соединен с устройством заземления PE. Устройство заземления не сложно, но тем не менее технологично и представляет собой группу штырей, вбитых вертикально в землю на значительную глубину до водоносного слоя, от 2.5 и более метров. Эти штыри соединены полосой или же кабелем в единый контур заземления жилого дома. Рассмотрим, какая существует классификация систем TN на сегодняшний день и в чем различие между всеми разновидностями.

В старом жилом фонде используется тип защиты ТN-C, это когда ноль N выполняет также роль защитного провода PE, совмещен. Это самый простой и дешевый вариант заземления электроустановки до 1000 В.

Тип TN-С морально устарел и электрически опасен, так как не имеет отдельного защитного проводника, и в случае обрыва нулевого провода, во время ЧП, весь потенциал окажется на электрооборудовании, подвергая риску поражения током или же возникновению пожара.

Поэтому во вновь проектируемых зданиях используют другую подсистему TN-S, в этом устройстве присутствует отдельный провод фаза, ноль (нейтраль) и защитный проводник PE. Проводники N и PE, начиная от подстанции с глухозаземленной нейтралью являются отдельными компонентами системы электроснабжения.

Данный вид является самым надежным из принятых типов заземления электрической сети. К его недостаткам можно отнести дороговизну, так как нуждается в дополнительном проводнике, от подстанции к потребителю.

Лишенная этих недостатков, относительно простая в реализации система TN-C-S, которая сочетает в себе достоинства описанных ранее систем. Также легко реализуется во время реконструкции старых зданий. Смысл данной схемы в том, что до ГРЩ организуется система TN-C, тут разделяют нейтральный провод PEN на два проводника N и PE, далее идет система TN-S.

Недостаток этой системы такой же, как и TN-C, при обрыве PEN шины система оказывается под полным напряжением. С этим недостатком борются установкой дополнительных устройств, таких как реле напряжения, производящих аварийное отключение потребителя от сети.

Существуют еще два вида снабжения, которые используются в специальных условиях, это тип TT — когда доставка электрической энергии организуется фазными проводами от источника с глухозаземленной нейтралью, а заземление организовывается непосредственно у потребителя. Таким способом осуществляют подключение мобильных домов, временных объектов. Данный тип требует обязательного использования устройств защитного отключения УЗО.

Еще один вариант — система IT, тип снабжения, не использующий глухозаземленную нейтраль. Ноль источника подключается через специальные устройства, имеющие высокое внутреннее сопротивление, а непосредственно у потребителя установлено устройство нуля и защитного заземления (согласно ПУЭ 7, глава 1.7). Данный тип снабжения используется в спец лабораториях, так как помехи, вносимые таким способом, минимальные.

Также рекомендуем просмотреть видео, на котором предоставлено описание каждой разновидности заземляющих систем с расшифровкой аббревиатур:

И напоследок хотим обратить внимание — запрещено использовать в качестве защитного заземления трубы отопления, газа, трубы водопровода, элементы металлических ограждений. В этом случае возможно появление на этих элементах полного напряжения 220 вольт, подвергая жизнь окружающих опасности. Берегите себя.

Вот и все, что хотелось рассказать вам об основных типах систем заземления, применяемых в России. Надеемся, теперь вы знаете, какие бывают схемы заземляющих контуров и в чем отличия между существующими вариантами!

Будет интересно прочитать:

Система заземления TN-S, схема, особенности, достоинства и недостатки

Система заземления TN-S является сегодня наиболее совершенной и продвинутой, с точки зрения защиты людей и электрооборудования от воздействия электрического тока. Согласно ПУЭ она повсеместно рекомендуется для монтирования при сооружении новых или реконструкции устаревших электрических систем. Система TN-S пришла на смену не достаточно эффективной и более простой системе TN-С. Эта потребность возникла из-за значительно увеличивающегося количества потребителей в современных домах и вероятности появления фазного тока на корпусе приборов, при дефектном нулевом проводнике.

TN-S – система заземления, организованная по принципу подвода в ГРЩ дома защитного РЕ-проводника, нулевого рабочего N – отдельными «независимыми» жилами от трансформаторной подстанции, обеспечивающей электроэнергией данных потребителей.

Реализация такой системы не требует повторного заземления, потому что основной заземлитель выполнен на питающей подстанции, в отличии от TN-C-S – системы, где защитный и нулевой провод разделяются в определенной точке электросети (обычно щит дома).

Данная система прокладывается 5-тижильным кабелем, который состоит из:

— 3-х фазных жил (А, В, С);

— нулевой рабочей жилы — N;

— нулевой защитной – РЕ.

Для однофазного электроснабжения система обустраивается 3-х-жильным проводом.

Достоинства системы TN-S

К числу преимуществ TN-S – системы заземления относят:

— высокую электробезопасность и надежность, в сравнении с другими системами, кроме того при ее эксплуатации можно использовать дифавтоматы и УЗО;

— ненадобность в регулярном наблюдении и контроле состояния контура заземления;

— отсутствие высокочастотных наводок и электромагнитных помех, возникающих в результате работы некоторых бытовых электроприборов (пылесос, бритва, перфоратор и др.), что особо важно для нормального функционирования сложной электроники.

Минусов у этой системы немного, к ним относят лишь:

— значительная стоимость, требующаяся для ее обустройства;

— существенные вложения при переоснащении действующих систем в виду наличия дополнительных проводов с большим количеством жил.

Глухозаземлённая нейтраль в сетях 0,4 кВ: режимы, применение, нормирование и пункты ПУЭ

Полная реконструкция технологических установок промышленных предприятий, включающая соответственно и полную реконструкцию их электроснабжения, проводится в настоящее время довольно редко в связи с большими инвестициями и длительностью ее реализации. Чаще всего реконструкция или техническое перевооружение проводится поэтапно в периоды капитальных ремонтов технологической установки.

Реконструкция электроустановок промышленных предприятий должна сопровождаться выполнением требований ПУЭ (седьмое издание), причем в п. 1.1.1. ПУЭ отмечено, что «по отношению к реконструируемым электроустановкам требования настоящих Правил распространяются лишь на реконструируемую часть электроустановок».

Это означает, что при реконструкции только трансформаторной подстанции (ТП) 6/0,4 кВ, включающей распредустройство (РУ) 0,4 кВ (без замены отходящих кабелей), требования Правил должны распространяться только на указанные ТП и РУ, не затрагивая других частей промышленной установки, не охваченных реконструкцией. В то же время при поэтапной реконструкции возникает проблема соответствия части электроустановки, спроектированной с учетом нового издания ПУЭ, частям электроустановки, реализованным по старым нормам и правилам. В основном это касается стороны 0,4 кВ, т.к. новыми Правилами введены возможные варианты (режимы) заземления нейтрали и открытых проводящих частей в сетях 0,4 кВ, которые предъявляют более жесткие требования к этим электроустановкам (пятипроводная система, применение УЗО-Д и т.п.).

Работа нейтрали типовой подстанции 10-6/0,4кВ

Рассмотрим в качестве примера типичный вариант реконструкции ТП и РУ 0,4 кВ технологической установки нефтеперерабатывающего предприятия при условии максимального использования существующих кабельных линий к потребителям 0,4 кВ. В данном случае не будем касаться электроустановок во взрывоопасных зонах, проектирование которых должно осуществляться с учетом кроме ПУЭ ряда других нормативных документов (в том числе ГОСТ Р 51330.13-99 «Электрооборудование взрывозащищенное. Электроустановки во взрывоопасных зонах».)

Упрощенная однолинейная принципиальная схема электроснабжения установки приведена на рис. 1.5. Схема состоит из комплектных распределительных устройств, содержащих ряд ячеек с автоматическими выключателями:

  • комплектная трансформаторная подстанция (КТП). Обычно со стороны высшего напряжения КТП имеют вводные шкафы: или напольные с отключающими аппаратами, или навесные для глухого ввода. Со стороны низшего напряжения КТП имеют шкафы: вводные, секционные и линейные с выкатными или стационарными автоматическими выключателями.
  • щиты станций управления (ЩСУ1, ЩСУ2), на которых устанавливают большое количество аппаратуры, необходимой для управления современными приводами механизмов. ЩСУ в сочетании с внешними командными аппаратами служат для дистанционного и автоматизированного управления приводами, обеспечивая пуск, работу

Однолинейная принципиальная схема электроснабжения установки на низшем напряжении (0,4 кВ) в нужных режимах, остановку, а также защиту двигателей. На рис. 1.5 отходящие от ЩСУ линии для упрощения схемы не показаны.

В схеме показаны две комплектные компенсирующие установки (ККУ-1, ККУ-2), которые, как правило, подключаются к КТП в случае необходимости компенсации реактивной мощности на стороне 0,4 кВ. На шины КТП также подключаются мощные двигатели (М) технологической установки и мощные и/или ответственные распределительные щиты (Щ). Для упрощения на схеме эти нагрузки обозначены по одному присоединению каждая. Щитов станций управления может быть несколько в зависимости от сложности и производительности технологической установки, следовательно, и располагаться они могут как в одном помещении с КТП, так и в разных. В нашем случае будем считать, что ЩСУ1 обозначает щиты, расположенные в одном помещении с КТП, а ЩСУ2 – в разных помещениях с КТП. Нагрузкой ЩСУ (на схеме не показана) в основном являются двигатели и распределительные щиты, которые значительно меньше по мощности, чем подключаемые к КТП.

Смотрите так же:  220 вольт вн великий новгород

Варианты работы нейтрали в соответствии с ПУЭ

Выберем варианты (режимы) заземления нейтрали и открытых проводящих частей в сети 0,4 кВ рассматриваемой схемы электроснабжения, учитывая, что основные трехфазные электроприемники технологической установки на настоящий период подключены к РУ 0,4 кВ с помощью четырехжильных кабелей, основная часть которых по техническому заданию замене не подлежит. Согласно ПУЭ электроустановки напряжением до 1 кВ жилых, общественных и промышленных зданий и наружных установок должны, как правило, получать питание от источника с глухозаземленной нейтралью с применением системы TN (п. 1.7.57).

В этой связи мы должны в первую очередь рассмотреть возможность использования системы TN-C, а также необходимость применения систем TN-S или комбинированной TN-C-S для различных уровней схемы (КТП, ЩСУ, Щ).

Пункт 1.7.131. Правил ПЭУ гласит:

«В многофазных цепях в системе TN для стационарно проложенных кабелей, жилы которых имеют площадь поперечного сечения не менее 10 мм2 по меди или 16 мм2 по алюминию, функции нулевого защитного (РЕ) и нулевого рабочего (N) проводников могут быть совмещены в одном проводнике (PEN-проводник)».

Отсюда следует, что для КТП, мощные нагрузки которого обуславливают применение для их питания кабелей с жилами, превышающими указанные выше площади поперечного сечения, вполне подходит система TN-C. В связи с тем, что согласно пункту 1.1.26. Правил «проектирование и выбор схем, компоновок и конструкций электроустановок должны производиться на основе технико-экономических сравнений вариантов с учетом требований обеспечения безопасности обслуживания, применения надежных схем, внедрения новой техники, энерго- и ресурсосберегающих технологий, опыта эксплуатации», проанализируем выбор системы TN-C для КТП (см. рис. 1.6).

По технико-экономическим показателям данная система однозначно дешевле, чем TN-S из-за отсутствия пятого провода и УЗО, причем разница в затратах тем больше, чем более мощные нагрузки подключены к КТП и чем длиннее кабели к ним.

Меры повышения безопасности в системе TN-C

С точки зрения обеспечения безопасности обслуживания можно предложить ряд мер для ее повышения в системе TN-C по сравнению с TN-S.

    Во-первых, в большинстве случаев для рассматриваемого нефтеперерабатывающего предприятия корпуса электродвигателей и распределительных шкафов, подключенных к КТП, имеют повторное заземление, которое сохраняется при реконструкции технологических установок. Эта мера соответствует современным требованиям, т.к. пункт 1.7.61. Правил гласит:

«При применении системы TN рекомендуется выполнять повторное заземление PE- и PEN-проводников на вводе в электроустановки зданий, а также в других доступных местах. Для повторного заземления в первую очередь следует использовать естественные заземлители. Сопротивление заземлителя повторного заземления не нормируется».

  • Во-вторых, для большинства ответственных электродвигателей 0,4 кВ в настоящее время предполагается установка защиты от замыкания на землю. Она выполняется или с помощью модуля защитногоотключения остаточного тока, присоединяемого непосредственно к клеммам автоматического выключателя, или с помощью отдельно устанавливаемого реле, подключаемого к трансформатору тока в виде разъемного (неразъемного) тора, охватывающего фазные жилы питающего кабеля (например, модуль Vigi. или реле Vigirex для низковольтного оборудования Merlin Gerin), как показано на рис. 1.6.
  • В-третьих, комплектные компенсирующие установки практически всегда располагаются в помещении КТП, поэтому кабели к ним имеют малую длину, а соответственно, мала вероятность их повреждения. Кроме того, доступ в помещение КТП имеет только квалифицированный электротехнический персонал (причем без постоянного присутствия людей в помещении), поэтому требование обеспечения безопасности обслуживания оборудования КТП можно считать выполненным. Это касается и ЩСУ1, находящегося в помещении КТП.
  • Рис. 1.6. Варианты применения систем TN-C и TN-C-S в рассматриваемой схеме:

    * — обозначены четырехжильные кабели, **- обозначен пятижильный кабель.

    Таким образом, в подавляющем большинстве случаев КТП могут быть выполнены по системе TN-C при хороших технико-экономических показателях и удовлетворительных мерах по обеспечению безопасности обслуживания электроустановок. Этот вывод подтверждается и многолетним опытом работы как отечественных, так и зарубежных электроустановок, характеризуемых наличием симметричной трехфазной нагрузки, в которых система TN-C выдержала испытание временем и потому ее применение разрешено.

    Классификация потребителей для выбора режима нейтрали

    Выбор системы для щитов станций управления обусловлен в первую очередь характером нагрузок на них. Здесь можно выделить три характерных типа ЩСУ:

    • ЩСУ с достаточно мощными трехфазными потребителями (насосы, вентиляторы, компрессоры, непосредственно участвующие в технологическом процессе), сечения жил кабелей которых удовлетворяют требованиям пункта 1.7.131 ПУЭ;
    • ЩСУ с большим количеством маломощных трехфазных потребителей (задвижки, вспомогательные насосы, вентиляторы и т.п.), кабели которых не удовлетворяют требованиям пункта 1.7.131 ПУЭ;
    • ЩСУ, имеющие в своем составе нагрузки обоих предыдущих типов.

    Для ЩСУ первого типа полностью подходят все вышеприведенные доводы, касающиеся КТП. Особенностью таких ЩСУ по сравнению с КТП является, например то, что они находятся в отдельном помещении на определенном удалении от КТП, что никак не влияет на выбор для них системы TN-C (см. ЩСУ1 на рис.1.6).

    Более сложная ситуация возникает с выбором системы для ЩСУ второго типа, т.к. здесь по требованиям ПУЭ нельзя использовать совмещенный PEN-проводник, а требуется переход к системе TN-S. В этом случае можно предложить несколько выходов из создавшегося положения.

    1. Во-первых, необходимо заказывать заводу-изготовителю распредустройство для данного ЩСУ с пятью шинами (тремя фазными, нулевой рабочей -N и нулевой защитной – РЕ).
    2. Во-вторых, предусмотреть установку в ЩСУ, где это необходимо по требованиям нормативных документов, автоматических выключателей с модулями УЗО (устройствами дифференциальной защиты), причем на данном этапе реконструкции (замена оборудования ТП и РУ 0,4 кВ без замены кабелей) УЗО должны быть выведены из работы, до момента замены четырехпроводных кабелей на пятипроводные. Либо устанавливать УЗО в процессе замены кабелей, а при заказе оборудования для ЩСУ предусмотреть резервные места для установки УЗО в перспективе.
    3. В-третьих, рассмотреть возможность использования одной из свободных (резервных) жил существующих кабелей, например для электрифицированных задвижек, в качестве защитного РЕ-проводника. Необходимо только иметь в виду, что в случае применения для таких потребителей автоматических выключателей с модулями УЗО, следует тщательно отстраивать уставки УЗО от больших емкостных токов утечки применяемых кабелей.

    Для ЩСУ, имеющих в своем составе нагрузки обоих предыдущих типов, скорее всего можно рекомендовать комбинированную систему TN-C-S (см. ЩСУ2 на рис.1.6).

      При поэтапной реконструкции систем электроснабжения промышленных предприятий необходимо решать проблему соответствия части электроустановки, спроектированной с учетом новых требований нормативных документов, узлам электроустановки, реализованным по старым нормам и правилам.

    В связи с этим необходимо особенно обращать внимание на сторону напряжения 0,4 кВ, так как новой редакцией ПУЭ введены возможные варианты (режимы) заземления нейтрали и открытых проводящих частей в сетях 0,4 кВ, предъявляющие более жесткие требования к этим электроустановкам (пятипроводная система, применение УЗО-Д и т.п.).

  • При проектировании реконструкции систем электроснабжения на стороне 0,4 кВ следует тщательно анализировать варианты применения системы глухого заземления нейтрали (TN-C, TN-C-S или TN-S) по отдельности для КТП, различных ЩСУ, щитов, сборок. При этом анализ следует проводить как на основе технико-экономического сравнения вариантов, так и с учетом обеспечения безопасности обслуживания и надежности применяемых схем.
  • Приведенный пример такого анализа показал, что в подавляющем большинстве случаев КТП и ЩСУ с достаточно мощными трехфазными потребителями могут быть выполнены по системе TN-C при хороших технико-экономических показателях и удовлетворительных мерах по обеспечению безопасности обслуживания электроустановок. ЩСУ и щиты с большим количеством маломощных трехфазных потребителей и кабелями малого сечения должны выполняться по системе TN-S. Система TN-C-S применима для ЩСУ и щитов, имеющих в своем составе нагрузки обоих предыдущих типов.
  • Моё мнение по системам заземления

    Пример заземления в частном доме

    Заземление – тема насколько сложная, настолько и простая. Недаром вопросы заземления вызывают множество споров на электрических сайтах и форумах.

    Попробуем разобраться, что к чему в этой теме. Выскажу своё мнение, которое иногда будет непопулярным. Кому нужна официальная трактовка – читайте ПУЭ (пункт 1.7). Также в интернете много сайтов и форумов, где подробно изложен вопрос заземления.

    Суть заземления

    Для чего нужно заземление, если и без него всё прекрасно работает? Более того, в нормальном режиме по проводу защитного заземления ток вообще не протекает.

    Тут ключевое слово – “защитное”. Кого и от чего защищает заземление? Оно защищает человеческие тела от воздействия электрического тока. А от чего защищает – от того, чтобы опасное напряжение ни в коем случае не появилось на теле человека, и через человека не пошёл ток.

    Представим ситуацию. Есть некий электрический прибор, например утюг. Утюг подключается через вот такую вилку.

    Старая вилка без заземляющего контакта

    Читатели постарше отлично помнят такие, они постоянно раскручивались, а прикрутить к ним гибкий провод было мучением.

    Корпус утюга частично металлический. Что будет, если вдруг фаза попадет на корпус? В принципе ничего, утюг даже может продолжать работать. Но его корпус будет находиться под потенциалом 220В относительно земли. А поскольку все мы ходим по земле, то притронувшись к металлическому корпусу такого утюга, через нас пойдёт ток.

    А дальше – как повезёт. Если кожа и пол сухие – просто немного дёрнет…

    Но если корпус утюга будет заземлён, то когда фазный провод попадёт на корпус, он соединится с заземлением, и уйдёт в землю. При этом произойдёт фактически короткое замыкание, и выбьет защитный автомат данной линии. А корпус как был под нулевым потенциалом, так и останется.

    Смотрите так же:  Электрокотлы 380 вольт

    Иными словами, если фаза вдруг попадёт на корпус прибора, это уже не проблема человека. Это проблема самого прибора и защитного автомата, который должен отключить этот прибор от фазного провода.

    Почему защитный автомат отключится? Если фазный провод попадает на защитный (заземляющий) проводник, это равносильно короткому замыканию, то есть максимально возможному току в схеме. И автомат сработает по электромагнитной защите.

    Напоминаю, что есть время-токовая характеристика автоматического выключателя, и при КЗ автомат будет работать в правой зоне характеристики, где время отключения стремится к нулю. Подробнее – в моей статье про выбор защитного автомата.

    То есть, ток в проводе защитного заземления течёт только в момент аварии, в остальное время он бесполезен. Поэтому раньше на нём экономили, и использовали двухпроводную систему питания, в которой есть только ноль и фаза.

    Обозначения и перевод названий систем заземления

    Существуют TN, TT и IT системы заземления. Система TN, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Первая буква говорит о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя.

    Типы систем заземления

    Буквы эти взялись из французского, и означают: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также из английского: «Combined» и «Separated» – комбинированный и раздельный.

    • T — провод подключен к земле .
    • N — подключение к нейтрали.
    • I — изолирование.
    • C — объединение функций, соединение рабочего и защитного нулевых проводов.
    • S — раздельное использование во всей сети рабочего и защитного нулевых проводов.

    Также в схемах систем заземления используются следующие обозначения:

    • L – Line, Линия, на которой действует фазное напряжение по отношению к нулевому проводу.
    • N – Neutral, рабочий ноль, по которому протекает рабочий ток, равный току в проводе L (для однофазных систем).
    • PE – Protect Earth, защитная земля, провод защитного заземления.
    • PEN – совмещенный рабочий и защитный нулевой проводник.

    Краткое описание работы систем заземления

    Системы заземления отличаются прежде всего безопасностью. То есть, сколько шансов выжить даёт человеку такая система после того, как на корпусе появилась фаза.

    Возникает путаница в терминологией – одну и ту же систему называю и занулением, и заземлением. Википедия предлагает системы TN называть занулением на том основании, что в них заземляющий проводник PEN соединен с нулевым (нейтральным) проводом источника питания. А уже этот провод в трансформаторе – заземлён. Заземляется для того, чтобы не было перекоса фаз.

    А что там свежего в группе ВК СамЭлектрик.ру?

    Подписывайся, и читай статью дальше:

    Подробнее о перекосе фаз, чем он опасен, и как с ним бороться – в другой моей статье.

    ПУЭ, Библия электрика, говорит, о том же самом, как о системах заземления.

    Скачать ПУЭ у меня можно здесь, в разных вариантах.

    Разница между этими понятиями, по моему мнению, очень зыбкая. По-моему, заземление нужно для поддержания напряжения на уровне потенциала земли на проводе PE и на всех нетоковедущих частях электроустановки, к которым он подключен. А зануление нужно для создания тока короткого замыкания при замыкании фазы на тех же частях электроустановки. В итоге, эффект может быть один – заземленные или зануленные части никогда не окажутся под фазным напряжением, и при этом должен сработать защитный автомат. Это если коротко и своими словами.

    Вообще, заземление это более широкое понятие, чем зануление.

    Можно сказать, система защиты безопасна настолько, насколько эта точка приближена к источнику напряжения. И опять же, что можно считать потребителем – электрочайник, квартиру, многоэтажный дом, или район города?

    Ну а если фаза “прорвётся” на корпус – её должен уничтожить защитный автомат со 100% вероятностью.

    Тут важными считаю две вещи:

    1. Весь металл, который не под фазой, должен быть под одним и тем же потенциалом. И желательно, чтобы этот потенциал был равен потенциалу земли. Это – “самый нулевой” потенциал.
    2. Опасное – недоступно. Доступное – безопасно. Бывает, смотришь в квартирные советские щитки или РП и волосы шевелятся.

    И ещё, в который раз повторюсь. Всегда рассматривается вероятность обрыва нулевого рабочего проводника. Дело в том, что при таком обрыве на всей схеме прибора, вплоть до точки обрыва нуля, присутствует фазное напряжение.

    В случае прикосновения ток проходит через нагрузку и через тело человека. Не смотря на сопротивление нагрузки, этот ток остается таким же опасным, как и при прикосновении к фазному проводу. Ведь сопротивление нагрузки (например, электробытового прибора) всегда гораздо меньше сопротивления тела человека.

    Схемы систем заземления

    Система TN-C

    TN-C – старая, советская система, когда земля просто бралась из нуля непосредственно в самой электроустановке.

    Схема системы заземления TN-C. Для однофазной системы L1, L2 отбросить.

    Что мы видим на этой схеме? Первое и самое главное. Нейтральная точка генератора или трансформатора подключена к земле (глухо заземлена). Поэтому нейтральная точка трансформатора имеет потенциал земли. А поскольку человек имеет тоже потенциал земли, между телом и нейтральным проводником – нулевая разность потенциалов, и прикосновение к нему безопасно.

    Однако, не всё так просто. Повторюсь, что вследствие перекоса фаз, а также падения напряжения на проводе PEN, на нём может присутствовать напряжение, отличное от нулевого. Поэтому провод PEN принудительно “притягивают” к земляному потенциалу через некоторые промежутки по ходу линии.

    Земля (то, из чего состоит наша планета) – универсальный и абсолютный ноль по потенциалу. Но если человеку придать потенциал фазного провода, то прикосновение к земле будет смертельно. В то же время, прикосновение к проводу, на котором тот же потенциал, будет безопасным.

    Видел документальный фильм, как человек спокойно спускается с вертолета на провод высоковольтной линии и работает там.

    В общем всё относительно. Можно упасть с 5-этажного дома насмерть. А можно вообще не повредиться, упав с того же дома. С первой ступеньки первого этажа)

    Система TN-C в настоящее время официально запрещена, и может использоваться только в трехфазных системах, где отсутствует перекос фаз, и ток по проводнику PEN (нулевой, он же защитный) в нормальном режиме не протекает. В результате, на этом проводе (а значит, и на корпусе прибора) будет потенциал нуля.

    Однако, в старом жилом фонде используется повсеместно из-за своей дешевизны. Дешевизна системы TN-C – это её единственный плюс. Ведь сечение защитного провода PE в однофазной сети должно быть равно сечению фазного провода. А это – удорожание всей электропроводки минимум на треть.

    Вообще говоря, в этой системе заземление напрочь отсутствует, и я не совсем понимаю, почему “это” называют системой заземления. Разве что, можно ноль кинуть на корпус, и прибор будет “типа” заземлён.

    Да и раньше, когда всю проводку делали по этой системе, практически и не существовало домашних приборов, требующих заземления.

    Первыми “ласточками” были стиральные машины, которые бились током. В лучшем случае к ним тянули провод от корпуса подъездного щитка, в худшем – цепляли корпус машины на трубу водопровода или к нулевому проводу.

    Нужный эффект, конечно, достигается, но шансы попасть под фазное напряжение значительно возрастают. Основная опасность приходит от того, что возможен обрыв нулевого провода, и тогда все “зануленные” приборы, и также приборы, имеющие импульсные блоки питания, получат на корпусах потенциал фазы.

    Как же защититься от поражения электрическим током в системе TN-C? Тут вспоминается УЗО (Устройство Защитного Отключения). Представим – человек коснулся фазного провода. Ток раздваивается – часть (надеюсь, бОльшая) уходит в нулевой проводник, а часть – через тело человека на корпус. Налицо дифференциальная разница (сорри, тавтология) в токах по фазе и нулю, на которую должно сработать УЗО.

    Однако, ПУЭ прямо говорит – в системе TN-C применение УЗО запрещено. Почему?

    Причина в том, что в данном случае может произойти то, о чем я писал выше. УЗО – это коммутационный аппарат, в котором может по какой-то причине нарушиться контакт PEN – проводника, и под фазное напряжение попадёт весь потребитель. В том числе и корпуса, если они занулены, а именно так и делается “заземление” в системе TN-C.

    ПУЭ также говорит, что защитный проводник (в данном случае – PEN) ни при каких условиях не должен разрываться, и должен быть всегда подключен к заземляемому устройству.

    Поэтому УЗО можно (и нужно!) применять во всех системах, кроме TN-C.

    Вот хороший рисунок, иллюстрирующий ситуацию:

    УЗО – применение в различных системах заземления

    Я вас так напугал, что по любому возникнет вопрос – как теперь с этим жить?

    Отвечаю. Для ухода от этой “нехорошей” системы применяют разделение проводника PEN на N и PE. Причем, это нужно делать как можно дальше от потребителя, и как можно ближе к источнику напряжения.

    Таким образом, мы перейдём на гораздо более безопасную систему – TN-C-S, о которой я расскажу чуть ниже.

    На практике совмещенный проводник PEN заземляют (повторное заземление) на вводе в здание, и там же разделяют на нейтральный N и защитный PE, которые далее НИГДЕ не должны соединяться.

    Другой вариант – переход к системе ТТ, в которой защитный проводник PE делается на основе контура заземления, и нигде не подключен к приходящему PEN. В данном случае PEN превращается в N, поскольку защитный ток ни к коем случает по нему течь не будет.

    Смотрите так же:  Узо уго

    Заземление в квартире с проводкой TN-C

    В квартирах ноль и землю разделять сложнее. По этому поводу постоянно ведутся жаркие споры среди электриков.

    Я думаю, что тут есть два приемлемых варианта.

    1. Ноль оставить как есть, а провод PE взять с магистрального PEN проводника. Пусть не с самого проводника, а с места, куда он подсоединяется к корпусу этажного щитка. Главное, чтобы наши N и PE были подключены в разных точках. PE – на корпусе, N – на изолированной от корпуса шине, на которую ноли приходит после вводного рубильника или автомата (если они есть) и счетчика. Кстати, так и делали в советские времена при подключении в квартирах электропечей.

    2. Провести трехпроводную систему (L, N, PE), но PE никуда не подключать. В результате мы не вносим изменения в этажный щиток (кстати, это запрещено!), а все нетоковедущие части электроприборов, металлических конструкций, труб и т.д. мы подключаем к этому проводнику. И в пределах квартиры у нас благодать! Только важное замечание – на группы розеток должны стоять УЗО на случай попадания фазы на корпус в пределах квартиры.

    Всё, теперь по-быстрому пробежимся по другим системам, там всё проще.

    Система TN-S

    В названии буква третья S. Это значит, что проводники N и PE разделены (Separated) на всём протяжении от подстанции до потребителя.

    Схема и описание системы заземления TN-S

    Эта система заземления наиболее безопасна и предпочтительна, однако применяется только в самых новых электроустановках. Ну а в основном в реалити сейчас применяют систему TN-C-S. То есть старую систему стараются приблизить к новой, отдаляя точку подключения N и PE от потребителя и приближая к источнику питания.

    Система TN-С-S

    Последние буквы в названии означают, что проводники N и PE после подстанции соединены (Connected) в один провод PEN, а потом, на вводе в здание, разделены.

    Схема и описание системы заземления TN-C-S

    При попадании фазы на корпус должен сработать защитный автомат по КЗ. При касании токоведущих частей должен сработать УЗО.

    Система TT

    Terra – Terra. Я уже писал в статье про эту систему, в ней заземляющий провод PE подключается к контуру заземления, и больше никуда. Применяется в основном в частных домах и временных постройках и электроустановках.

    Схема и описание системы заземления TT

    Всё замечательно, если также применяются УЗО от прикосновения к токонесущим частям и защитные автоматы от КЗ.

    Но есть один минус. Если в других системах своё заземление делать не обязательно, понадеявшись на заземление на подстанции или на столбах, то в данном случае его придётся делать. И делать очень качественно, чтобы в случае замыкания КЗ на землю ток короткого замыкания был достаточен для срабатывания автомата защиты.

    То есть возможен вариант, когда при КЗ на корпус потенциал корпуса останется близким к нулю, всё замечательно. Но при этом автомат защиты не выбьет, хотя через него (и через проводку дома) будет идти ток, близкий к максимальному! И проблема может подкрасться с другой стороны…

    Система IT

    Напоследок расскажу про специфическую систему заземления IT. Во всех других системах используются источники питания (трансформаторы) с глухозаземленной нейтралью. Иначе говоря, нулевой проводник на стороне источника заземлён.

    Однако, в системе IT источник питания полностью изолирован от земли – и ноль, и (естественно)) фаза.

    В результате по отношению к земле потенциал отсутствует. И при замыкании на землю ничего не произойдёт, ведь ток не потечёт, либо будет пренебрежимо мал.

    Я встречал такие системы для питания управляющих цепей в серьезном промышленном оборудовании. Ещё эта система применяется в переносных генераторах и других источниках питания, а также в медицинских учреждениях. Если один из выводов такого источника не заземлить и подключить к нагрузке, он будет работать по системе IT.

    Подробнее я писал об этом в статье про подключение генератора Хутер.

    Минус такой системы – при замыкании на землю она превратится в TN-C-S с плохим монтажом, и об этом даже можно не узнать, если не проконтролировать. И станет опасной.

    Видео про заземление

    Пожалуй, самое адекватное и понятное видео про заземление, которое я видел. Посмотрите, если кому показалось, что я пишу слишком скучно:

    На этом заканчиваю тему, спасибо за терпение, жду мнений и вопросов в комментариях.

    Виды систем заземления

    Заземление — отвод напряжения, возникшего в угрожающем для безопасности месте, в место, где оно никому не повредит: это место- земля. Заземление соединяет все токоведущие части, которые в нормальном режиме работы не находиться под U, с землёй.
    Зануление — это соединение всех частей электроприбора, которые не должны находиться под U, с рабочим нулём. В данном случае, если произойдёт обрыв фазы на токоведущие части, находящиеся под рабочим нулём, то произойдёт короткое замыкание и автоматический выключатель обесточит электроприбор. Это конечно менее безопасно, чем заземление, короткое замыкание может стать причиной последующих неполадок в приборе. К сожалению, именно зануление является основным видом защиты в большинстве жилых помещений.

    Заземление

    Системы заземления

    Рассмотрим системы, применяемые в бытовых помещениях:

    1. TN-C.
    2. TN-S.
    3. TN-C-S.
    4. ТТ.

    Первая буква Т означает, что нейтраль источника питания соединена с землёй, что значит, что проводник рабочего ноля на подстанции уходит в землю. Вторая буква- N — означает связь открытых токопроводящих частей электроустановки здания с точкой заземления источника питания. Третья буква- С -означает ,что защитный и рабочий ноль находятся на одном общем PEN, то есть рабочий ноль и является защитным. По сути, эта система и является тем самым «занулением». Самая небезопасная из систем. Все токоведущие части, которые не должны быть под U,находятся под рабочим нулём. Защита построена на действие автомата после короткого замыкания. Защитный и рабочий ноль находятся в одном проводнике до распределительного щита.

    Система заземления TN-C

    1.Открытые токопроводящие части.

    3.Распределительный щит на квартиру.

    Первые две буквы также, как и в предыдущей системе означают, что нейтраль источника питания связана с заземлением (которое расположено у источника питания) и открытые токопроводящие части электроустановки здания связаны с точкой заземления источника питания. Третья буква- S- значит, что нулевой и защитный PE и рабочий N находятся на разных проводниках (заземление). Это означает, что от электростанции отходят два отдельных провода на рабочий ноль и на заземление. Данная система является самой безопасной для многоэтажных зданий.

    Система заземления TN-S

    1.Открытые токопроводящие части.

    На представленной схеме видно, что от источника питания отходят два раздельных провода на рабочий ноль и на заземление, далее проводники не встречаются.

    Является модернизированной системой TN-C . Функции нулевого рабочего и нулевого защитного проводников объединены в одном проводнике в части сети, которая идёт от источника питания. Затем на определённом участке добавляется заземлённый проводник. Для многоэтажных домов обычно заземлённый проводник добавляют в ВРУ (вводное распределительное устройство на дом). Эта система также обеспечивает достаточную безопасность.

    Система заземления TN-C-S

    1.Открытые токопроводящие части.

    3.Распределительный щит на квартиру.

    На схеме представлена сеть до модернизации – система TN-C и после модернизации – система TN-C-S.

    Система ТТ

    Обычно применяется при постройке частных домов. Вторая буква Т значит, что заземление и рабочий ноль нигде не соединяются. О первой букве уже говорилось выше. В дом заходит так же, как и в системе ТN-S, три провода :рабочий ноль, фазный провод и заземляющий. Только вот заземляющий провод идёт не от источника питания (как в системе TN-S), а возле частного дома монтирован собственный контур заземления по всем правилам ПУЭ (правила устройства электроустановок), именно от заземляющего контура и идёт заземляющий провод.

    Система заземления TT

    1.Открытые токопроводящие части.

    3.Контур заземления у частного дома и отходящий от него проводник.

    Похожие статьи:

    • Проводка с заземлением в частном доме Как заземлить розетку своими руками Абсолютно безопасная проводка, с помощью которой происходит соединение всех имеющихся мощных электроприборов с заземляющими устройствами, обязательна и необходима в каждом жилом помещении. Заземление […]
    • Заземление кабеля с одной стороны СКС (структурированная кабельная система) проектирование, расчет, монтаж, тестирование – курсы, семинары, обучение, программы Полезные ссылки ОБУЧЕНИЕ ЦОД 26-28 марта Москва Мифы об экранированных кабельных системах. Миф №1. […]
    • Узо tn c s ВРУ 0.4 TN-C-S Доброго вечера всем Получили для исполнения вот такую схему от заказчика, он в свою очередь от проектировщиков [ ]( ) схема подключения TN-C-S, с контуром повторного заземления. Возникло несколько вопросов, на которые […]
    • Где взять заземление в панельном доме Заземление в квартире Обычно вопросами о монтаже заземления в квартире начинают задумываться в момент реконструкции электропроводки. После того как вы частично или полностью заменили старую двухжильную электропроводку на новую, […]
    • Расчет провода заземления Защитный заземляющий провод - Руководство по устройству электроустановок 6 Защитный заземляющий проводник (РЕ) 6.1 Схема соединений и выбор провода Защитные заземляющие провода (PE-провода) обеспечивают непрерывное соединение между всеми […]
    • Как выполняется зануление в электроустановках Защитное зануление электроустановок Назначение защитного зануления Зануление - это специально предусмотренное электрическое подключение открытых токопроводящих частей потребителей электроэнергии: к нейтральной точке генератора […]