Заземление системы шин

Вывод в ремонт системы шин 110 кВ

В действующих электроустановках в установленном порядке производятся периодические ремонты всех элементов оборудования. Проведение капитальных и текущих ремонтов оборудования позволяет вовремя обнаружить и предотвратить возникновение неисправностей или каких-либо отклонений от нормального режима работы оборудования электроустановки.

Система шин подстанции – это один из участков распределительного устройства подстанции, который, как и другие элементы оборудования, подлежит периодической ревизии и ремонту. Для проведения работ на системе шин, ее необходимо вывести в ремонт, то есть отключить (снять напряжение) и заземлить. Вывод в ремонт систем шин – это одна из наиболее сложных задач для оперативного персонала в электроустановке. Сложность в выполнении операций в данном случае обусловлена наличием дифференциальной защиты шин. Рассмотрим порядок вывода в ремонт системы шин 110 кВ.

Вывод в ремонт системы шин означает, что один из трансформаторов напряжения 110 кВ отключается, поэтому в первую очередь следует все цепи вторичной коммутации, которые питаются от данного трансформатора напряжения, перевести на другой, остающийся в работе, трансформатор напряжения или, при необходимости вывести из работы.

Все присоединения, которые зафиксированы за данной системой шин необходимо перефиксировать на другую систему шин 110 кВ, которая остается в работе. В данном случае операции по переводу присоединений на другую систему шин включают в себя операции по переводу цепей напряжения, которые, как упоминалось выше, необходимо также перевести на другой трансформатор напряжения.

При перефиксации присоединений с одной системы шин на другую, необходимо также перефиксировать токовые цепи дифференциальной защиты шин данных присоединений. Если этого не сделать, произойдет ошибочное срабатывание ДЗШ в результате возникновения дифференциального тока (выхода защиты из баланса) и обесточению систем шин 110 кВ.

Поэтому, чтобы избежать ошибочной работы дифференциальной защиты шин, следует установить данную защиту в нефиксированный режим. Вывод защиты из данного режима производится только после перефиксации всех присоединений и проверке правильности выполненных операций. Отсутствие дифференциального тока ДЗШ является критерием правильности выполненных операций по перефиксации присоединений.

Кроме того, перед выполнением работ с шинными разъединителями перефиксироваемых присоединений, дифференциальная защита шин устанавливается в режим запрета ее вывода в случае неисправности токовых цепей, включается также запрет на автоматическое повторное включение системы шин в случае срабатывания ДЗШ. Данные меры принимаются, прежде всего, для обеспечения безопасности оперативного персонала при выполнении операций с шинными разъединителями 110 кВ под напряжением.

Помимо цепей напряжения защит отходящих присоединений, следует перевести цепи счетчиков электрической энергии присоединений 110 кВ. Если не выполнить перевод цепей напряжения приборов учета, то после вывода в ремонт системы шин данные приборы работать не будут, что приведет к недоучету потребляемой и отпущенной электрической энергии. Учитывая большие объемы потребления и отдачи электрической энергии подстанциями 110 кВ, недоучеты электрической энергии приводят к существенным убыткам.

После того, как переведены все цепи вторичной коммутации трансформатора напряжения выводимой в ремонт системы шин, обестачивается система шин. Обесточение системы шин осуществляется путем отключения шиносоединительного выключателя. Отсутствие напряжения на системе шин контролируется по показаниям киловольтметров ТН данной системы шин.

Далее производится отключение автоматических выключателей трансформатора напряжения. Как правило, в цепях вторичной коммутации трансформаторов напряжения (звезда, треугольник) предусматривается возможность объединения данных цепей с другим трансформатором напряжения. Поэтому, помимо отключения автоматов вторичных цепей ТН, необходимо создать видимый разрыв.

Видимый разрыв цепей осуществляется посредством снятия рабочих крышек испытательных блоков с последующей установкой пустых (холостых) крышек. При отсутствии испытательных блоков во вторичных цепях ТН, видимый разрыв создается путем отсоединения и закорачивания выводов вторичных обмоток ТН от автоматических выключателей.

В случае использования во вторичных цепях предохранителей, их снятие обеспечивает также видимый разрыв.

Далее отключается шинный разъединитель трансформатора напряжения выводимой в ремонт системы шин, и выполняются операции по заземлению системы шин. В соответствии с правилами безопасной эксплуатации электроустановок, система шин может быть заземлена путем установки одного заземления.

Как правило, заземление системы шин осуществляется включением стационарных заземляющих ножей шинного разъединителя трансформатора напряжения. В зависимости от схемы распределительного устройства 110 кВ, возможно наличие заземляющих ножей на шинных разъединителях других присоединений, например, шиносоединительного выключателя.

Если выполнение работ по ремонту системы шин совмещается с выполнением работ по ремонту того шинного разъединителя, на котором включены стационарные заземляющие ножи в сторону системы шин, то следует устанавливать дополнительное переносное заземление. Это связано с тем, что выполнение работ по ревизии и ремонту шинного разъединителя предусматривает выполнение на нем коммутационных операций, в том числе и операций по включению и отключению стационарных заземляющих ножей.

Держатель шин заземления, латунь

Арт. 90187.
Держатель шин заземления, латунь.

Держатели шин заземления предназначены для закрепления на вертикальной поверхности полосы размером 40х4 мм, 25х4 мм, а также прутка диаметром 10 мм. Круглые и плоские проводники фиксируются соответствующим отгибанием элементов. Для фиксации на поверхности держатель имеет отверстие диаметром 7 мм.

Ремонт системы шин 110 кВ — периодичность и перечень работ

Периодически во всех действующих электроустановках в установленный соответствующими нормативными документами срок выполняются ремонты всех элементов системы электроснабжения, в том числе и систем шин 110кВ.

Смотрите так же:  Подключение трансформатора звезда-треугольник

Система шин 110кВ трансформаторной подстанции представляет собой участки шин гибкой или жесткой конструкции, имеющие малое сопротивлением, служащие для подключения различных фидеров. Это один из ответственных участков распределительного устройства, который также должен подвергаться периодическим ревизиям, ремонтам. Перед проведением ремонтных работ систему шин 110кВ необходимо отключить и заземлить.

Порядок действий при отключении системы шин 110кВ

Вывод в ремонт на практике означает отключение одного из трансформаторов подстанции и перевод электроснабжения через один трансформатор.

  1. Цепи вторичной коммутации, получающие питание от трансформатора напряжения данной секции, следует перевести на питание от второго трансформатора.
  2. Отходящие фидеры, получающие питание от данной системы шин, следует перефиксировать на другую систему. Это же касается и токовых цепей ДЗШ данных фидеров.

В противном случае, может произойти ложное срабатывание ДЗШ, которое приведет к отключению системы шин.

  • Для исключения ложного срабатывания ДЗШ, необходимо установить ее в нефиксированный режим, вывод из которого возможен только при перефиксации всех фидеров.
  • ДЗШ и АПВ системы шин устанавливается в так называемый режим «запрета».
  • Цепи учета электроэнергии также следует вывести в ремонт, поскольку невыполнение данных действий может привести к недоучету израсходованный или потраченной электроэнергии.
  • Выполняется отключение системы шин путем вывода шиносоединительного выключателя.

    Проверка отсутствия напряжения производится по показаниям киловольтметров на данной системе шин.

  • Выполняется отключение высоковольтных выключателей системы шин, трансформаторов напряжения. Для обеспечения безопасности производятся действия, по созданию видимого разрыва (путем снятия рабочих крышек с испытательных блоков, установления закоротки на вторичные выводы обмоток ТН, снятия предохранителей и пр.).
  • Отключается шинный разъединитель ТН отключаемой системы шин, выполняются мероприятия по ее заземлению.

    В соответствии с ПБЭЭ, система шин 110кВ должна быть заземлена путем установки заземляющего устройства (установкой стационарных заземляющих ножей).

    Периодичность выполнения ремонтов систем шин 110кВ устанавливается

    • текущий ремонт – 1 раз в год;
    • капитальный ремонт – по мере необходимости (определяется комиссией с участием главного энергетика).

    Во время текущего ремонта устраняют дефекты, выявленные во время осмотров, ликвидируют причины выявленных в ходе эксплуатации неисправностей в работе электрооборудования.

    Система заземления операционной и других помещений группы 2

    В ГОСТ Р 50571.28 п.710.413.1.6.1 однозначно сказано: «В каждом медицинском помещении группы 1 или 2 должна быть выполнена система дополнительного уравнивания потенциалов для уравнивания электрических потенциалов…». Подробнее про систему дополнительного уравнивания потенциалов читайте здесь.

    I категория надежности и «особая группа» нуждаются в радиальной схеме линий питания, включая разводку заземления. Магистральная схема допустима только для III и II категорий надежности электроснабжения. Но ради экономии заземление для первой категории и особой группы часто создают по магистральной схеме с отводами до подключаемых помещений.

    Рассмотрим пример. Пособие по проектированию учреждений здравоохранения (СНиП 2.08.02-89 ) гласит: «…Внутри здания магистраль рабочего заземления выполняется проводом с алюминиевой жилой сечением 25 кв. мм, а ответвления к клеммникам рабочего заземления – сечением 10 кв. мм в стальной трубе скрыто. Ответвления к клеммникам рабочего заземления выполняются без разрыва магистрали с помощью сжимов…».

    Сразу же возникает ряд замечаний:

    • Электрический раздел данного пособия содержит большое количество ошибок и противоречий с нормативами более высокого статуса, например с ПУЭ (Правила устройства электроустановок). Как следствие, возникают сомнения в квалификации авторов этого раздела.
    • Еще одна цитата: «…Шина устанавливается на высоте 150 мм от уровня пола в одной плоскости со стеной, без зазоров и щелей или скрыто. К шине через каждые 1,5 м. привариваются выступающие болты М6…». Не стоит заострять внимание на некрасивом внешнем виде такой конструкции, а вот болты, размещенные на такой высоте от пола, представляют угрозу травмы для ног персонала. Шину можно установить скрыто, но тогда нарушатся главные правила, которые нельзя обойти: доступ к осмотру и возможность индивидуального отключения присоединенного проводника уравнивания потенциалов. Как вариант, можно через 1,5 м устанавливать специальные герметичные смотровые лючки, но…
    • На сегодняшний день пособие имеет статус «недействительно».

    Варианты присоединения шины дополнительного уравнивания потенциалов к главной заземляющей шине (ГЗШ):

    Согласно российской нормативной базе оба варианта являются правомерными.

    Вариант 1 имеет ограничение. Если проводник соединяет шины дополнительного уравнивания потенциалов с шиной РЕ распределительного щита 16 кв.мм, то и жила РЕ в составе кабеля питания должна быть не менее 16 кв.мм.

    Для варианта 1 и 2 справедливо, что при укладке проводника соединения шин в один лоток или короб с негорючими кабелями (ВВГнг-FRLSTx…) тип проводника должен быть тоже негорючим. Однако негорючие одножильные провода желто-зеленого цвета не производятся, решением является маркировка провода специальной желто-зеленой липкой лентой.

    Согласно ГОСТ Р 50571.28 п.710.413.1.6.3: «Шина уравнивания потенциалов должны быть расположены в самом медицинском помещении или в непосредственной близости от него. В каждом распределительном шкафу или в непосредственной близости от него должны быть расположена шина системы дополнительного уравнивания потенциалов, к которой должны быть подключены проводники…».

    Схема подключения заземляющих проводников электрооборудования к шине дополнительного уравнивания потенциалов:

    РЗ-01 (ЩРЗ-01, ЩРЗ-03) – розетка заземления для быстрого подключения и заземления переносных и передвижных электроприборов.

    В Европе принято использовать 2 шины в помещении: 1-я шина защитного заземления (РЕ) с подключением заземляющих проводников от электрооборудования и 2-я шина уравнивания потенциалов (РА), предназначенная для подключения сторонних проводящих частей. Шины между собой соединены и подключены к ГЗШ.

    Шину дополнительного уравнивания потенциалов для помещений группы 2 можно создать несколькими способами:

    • Проложить шину в пластиковый электротехнический короб.
    • Применить специальные щитки заземления типа ЩРМ-ЩЗ (IP54).
    • Использовать шины заземления распределительного шкафа. Здесь следует выполнить условие: шкаф должен быть расположен внутри помещения или в непосредственной близости, а количество проводников уравнивания потенциала невелико.
    Смотрите так же:  Акт измерения сопротивления изоляция электропроводок образец

    Подробнее читайте в статье «Защитное заземление. Основная и дополнительная системы уравнивания потенциалов. Сторонние проводящие части», раздел «Практика выполнения дополнительной системы уравнивания потенциалов».

    Общая схема заземления помещения группы 2 с учетом антистатического пола:

    Антистатический пол можно сделать другим способом.

    Если есть функциональное, рабочее, заземление, то можно использовать варианты, представленные ниже:

    Вариант «Б» дополнительно содержит фильтр заземления (ФЗ), не допускающий распространение высокочастотных помех из одной системы заземления в другую.

    Фильтры заземления ТМ «Полигон» выбираются по сечению внутреннего проводника. Индуктивность фильтра для расчетов принимается как 20 метров медного проводника равного сечения.

    Система шин PE/PEN

    Подходит для непосредственной установки в распределительные шкафы, держатели шин, комбинации PE/PEN в сочетании с комбинированным уголком PE/PEN и соединителем E-Cu.

    Система шин PE/PEN, состоящая из шин, комбинированных уголков и соединителей, позволяет создать конструкцию, соответствующую МЭК 60 439-1.

    Система шин PE/PEN, состоящая из шин, комбинированных уголков и соединителей, позволяет создать конструкцию, соответствующую МЭК 61 439-1.

    Самоудерживающиеся гайки с рифлением для отверстий в шинных сборках.

    Телекоммуникационное заземление

    При монтаже СКС мы рекомендуем заказчикам устанавливать систеу телекоммуникационного заземления, даже если это не предусмотрено в техническом задании. В разделе «Реализованные проекты» можно увидеть, что мы установили системы телекоммуникационного заземления во всех проектах за исключением случаев, когда эти системы были ранее смонтированы.

    Система телекоммуникационного заземления (СТЗ) должна быть установлена во всех СКС, независимо от наличия экранированных кабелей. Она решает три основных задачи:
    1) безопасность людей благодаря заземлению всех металлических конструктивов и уравниванию потенциалов силового и слаботочного заземления. Чем выше класс системы, тем более строгие требования к ее эквипотенциальности. Особенно требовательным является приложение Gigabit Ethernet 10GBASE-T;
    2) защита дорогостоящего оборудования за счет снижения эффектов электромагнитных наводок при грозовых разрядах;
    3) повышение качества передачи сигналов. Симметрия плюса и минуса может быть получена только при неискаженном нуле.
    На фото вы можете увидеть различные элементы СТЗ, варианты подключения, старый и новый варианты исполнения телекоммуникационных шин заземления.

    Держатель шин заземления К188У2

    Подбор по параметрам

    Держатель шин (полосы) заземления К188У2 для крепления к строительным конструкциям круглых (диаметром 10,12 мм) и плоских (размерами 40×4 и 25×3 мм) заземляющих проводников.

    Шинодержатель К188 закрепляется пристрелкой, приваркой или винтом. Заземляющие проводники укладывают в пазы держателя: круглые в верхнюю часть паза, выполненную в виде призмы, плоские в нижнюю прямоугольную часть паза. Круглые заземляющие проводники и плоские сечением 40×4 и 25×3 мм фиксируются отгибанием усиков.

    Информационное заземление

    При построении структурированных кабельных систем (СКС), сетей передачи данных и ЛВС, а также других объектов информационных технологий у многих специалистов-электриков закономерно возникают вопросы по проектированию заземления. Чтобы не было неопределенностей в этих вопросах введем базовые понятия и определения в этой сфере знаний.
    В соответствии с международными и российскими нормативными документами имеются два больших класса заземлений: защитное и функциональное заземление. Также можно использовать терминологию (рабочее или информационное заземление). Исходя из этих факторов, шины заземления или проводники, маркируются как PE — защитное заземление и FE — функциональное заземление.
    Воспользуемся основным нормативным документом для инженера-электрика, а именно, «Правилами устройства электроустановок» ( ПУЭ п.1.7.29 ): Защитное заземление выполняется только в целях электробезопасности. При работе с любыми электроприборами персонал должен быть надежно защищен от токов низкой частоты и высокой амплитуды, которые представляют серьезную угрозу здоровью и жизни каждого человека.
    А вот заземление, которое мы называем информационным (функциональным), обеспечивает именно работу самой электроустановки. То есть, такое заземление выполняется не в целях электробезопасности объекта. При разработке таких систем можно исходить из положений ПУЭ п. 1.7.30.
    Проектировщику надо знать, что нельзя использовать только информационное заземление, без применения защитного.
    Работа функционального заземления идет с токами высокой частоты и низкой амплитуды и задача его обеспечить электромагнитную совместимость (ЭMC) и защитить от электромагнитных помех. Токи ВЧ низкой амплитуды непосредственно не угрожают жизни человека, но могут влиять на качество связи, например в СКС.
    При определении задач FE советуем руководствоваться ГОСТ Р 50571.22-2000 п. 3.14 (707.2), который как раз таки описывает как спроектировать заземление для систем обработки информации и связи.
    Проектировщики, как правило, выставляют жесткие требования, при соблюдении которых на корпусе заземляемого устройства не должно быть даже самого маленького электрического потенциала. Именно это условие и есть залог нормального функционирования оборудования связи или информационных технологий.

    Как выполнить функциональное заземление на объекте?

    Для этой цели необходимо использовать заземляющее устройство функционального заземления вместе с функциональными проводниками, которые служат для соединения электроприемников с главной заземляющей шиной. При этом, согласно ГОСТ 50.571-4-44-2011 п. 444.5.1. все проводники защитного и функционального заземления должны быть соединены с этой шиной, а заземлители соответствующего назначения соединены между собой. Такие меры необходимы для исключения их влияния друг на друга, которое приводит к опасному повышению напряжения, риску повреждения оборудования и опасности поражения электрическим током.
    Если следовать положениям ГОСТ Р 50571.21-2000 п. 548.3.1, то можно реализовать такое схемное решение: объединяем функциональные и защитный проводники (соответственно FE и PE) в специальный проводник (PEF-проводник). А уж затем присоединим его к ГЗШ, так называемой, главной заземляющей шине электроустановки. В TN-S системе для функционального заземления разрешается использовать PE-проводник цепи питания оборудования обработки информации.

    Требования к информационному заземлению

    FE-заземление обычно описывается требованиями, которые излагаются в эксплуатационной документации изготовителя изделия (паспорт, технические условия, технический регламент и пр.) или в ведомственных нормативных документах. К примеру, для продуктов и систем информационно-коммуникационных технологий (ИКТ), ранее средств ВТИ, будем использовать положения нормативного документа СН 512-78 («Технические требования к зданиям и помещениям для установки средств вычислительной техники»). Опираясь на инструкции, изложенные там, приходим к выводам, что сопротивление заземления такого оборудования не должно превышать 1 Ом. А вот если мы проектируем заземление для чувствительных медицинских приборов, то это значение будет не более 2-х Ом. («Пособие по проектированию учреждений здравоохранения к СНиП 2.08.02-89»).
    Здесь используется, так называемая «лучевая схема заземления», с заземлителем типа FE (низкоомным), что приводит к работе без электрических помех всего комплекса ИКТ.
    В отдельных случаях так же возможно использовать и модульный глубинный заземлитель.
    Введем понятие электромагнитной совместимости (ЭМС) оборудования и для этого обратимся к ГОСТ Р 50397-92 (МЭК-50-161-90).
    ЭМС оборудования, рассматривается в общем случае, как способность оборудования качественно работать в условиях заданной электромагнитной обстановки и не создавать недопустимых помех электромагнитной природы другим приборам и электросети.
    И далее с этих позиций попытаемся выяснить причинно – следственную связь между FE – заземлением, ЭМС и безопасностью ИКТ.
    Продукт или система ИКТ будет удовлетворять требованиям Европейской директивы по ЭМС EN 55022 при выполнении следующих условий:

    • Электромагнитное излучение от активного оборудования в окружающую среду не превышает нормативы EN 55022
    • Помехозащищенность активного оборудования не уступает нормативам EN 55024
    • Информационная кабельная проводка (т.е. среда передачи сигналов) правильно смонтирована и корректно заземлена
    Смотрите так же:  Бизнес план производства провода

    Еще один важный фактор – это уравнивание потенциалов между заземляющими устройствами PE и FE – типов. Именно этим моментом определяются условия электробезопасности персонала, а также и помехоустойчивость систем ИКТ. Как это реализуется на практике? Обычно электрики монтируют кольцевой соединительный проводник и соединяют его с ГЗШ.
    Если же продукты ИКТ работают с напряжением питания 5-12 В постоянного тока и являются слаботочными, то здесь возможны паразитные сигналы, возникшие именно из-за разности потенциалов и их флуктуаций. Дело в том, что некоторые системы ИКТ могут воспринять такой паразитный сигнал, как информационный, вследствие этого, могут произойти сбои в сетях связи, на серверах, а также нарушения работы информационно – измерительных систем. Особенно опасна такая ситуация на объектах критической инфраструктуры.
    Другим аспектом качества FE – заземления является информационная безопасность продуктов и систем ИКТ. Дело в том, что побочные электромагнитные излучения и наводки (ПЭМИН) наряду с проблемами ЭМС создают технические каналы утечки конфиденциальной информации, хорошо известные специалистам по информационной безопасности (ИБ).
    Особенно актуальна эта проблема для компьютерного оборудования и систем передачи данных, задействованных в обработке информации, которая считается конфиденциальной. Но это уже другая история, относящаяся к компетенциям ФСТЭК, Роскомнадзора и ФСБ.

    Независимое исполнение FE – заземления

    Для высокочувствительных медицинских приборов в учреждениях здравоохранения необходимо выполнять отдельное функциональное заземление, которое не связано с защитным, а также с системами уравнивания потенциалов объекта.
    При данном выполнении функционального заземления заземляющее устройство FE-заземления необходимо размещать отдельно (не менее 15 метров) от зоны влияния PE – заземлителей. Следует подчеркнуть, что такая схема представляет собой особый (нетипичный) вариант заземления и тут применимы повышенные меры электробезопасности.
    Если в документации на оборудование ИКТ прямо указано на необходимость независимого информационного заземления, то в этом случае в шкафу с оборудованием, как правило, монтируют две независимые шины заземления PE и FE. Шину FE в таком случае изолируют полностью от корпуса шкафа, экраны сигнальных проводников присоединяют к ней.
    На практике FE-проводник присоединяют с помощью медного кабеля (сечение от 1х25 мм2), который надежно изолирован с FE-заземлителем. Причем этот заземлитель должен быть отнесен на безопасное расстояние (более 20 м) от PE-заземлителя. А вот корпус шкафа, где размещено оборудование, должен быть заземлен с помощью проводника PE на шину уравнивания потенциалов, которая соединена с ГЗШ.

    Заключение

    В наше время применение модульно–штыревых заземлителей глубокого залегания (до 30 м и даже более) и других технологических схем позволяет проектировать повторное защитное заземление PE на входе в здание равным по параметрам сопротивления функциональному заземлению. И в этом случае, отпадает необходимость в использовании отдельных систем заземления.
    Для более подробного ознакомления с технологией и тактико–техническими характеристиками модульных систем заземления желающих отсылаем на наш интернет–ресурс.

    Похожие статьи:

    • Заземление в щитке частного дома Заземление в щитке частного дома Назначение защитного заземления При пробое изоляции питающего провода на металлическом корпусе незаземлённого прибора появляется потенциал. Если дотронуться к такому устройству, то можно получить удар […]
    • 220 вольт на 110 постоянного Источники питания постоянного тока На товар действует рассрочка оплаты. Для получения дополнительной информации свяжитесь с менеджером. Для получения информации по бесплатной доставке по России свяжитесь с менеджером. Окончательная […]
    • Заземление нейтрали трансформатора через реактор Заземление нейтралей и защита разземленных нейтралей трансформаторов от перенапряжений В современных энергосистемах сети 110 кВ и выше эксплуатируются с эффективным заземлением нейтралей обмоток силовых трансформаторов. Сети напряжением […]
    • Монтаж рабочего заземление Заземление для АСУ ТП Существующие цепи заземления средств вычислительной техники и автоматизации принято подразделять на: Цепи защитного заземления (ЗЗ). Цепи рабочего заземления (РЗ). 1. Защитное заземление Указанный тип […]
    • Как понизить напряжение с 220 до 12 вольт резистором Как понизить постоянное и переменное напряжение — обзор способов Понижаем переменное напряжение Рассмотрим типовые ситуации, когда нужно опустить напряжение, чтобы подключить прибор, который работает от переменного тока, но напряжение его […]
    • Страны с 220 вольт Почему у нас напряжение сети 220 Вольт, а в Америке 110? Почему не одинаково? В чем подвох? Ведь можно и спалить чё. 110 вольт в Америке и в Японии. Их специалисты решили, что для обычной техники 110 самый оптимальный вариант. 110 […]