Заземление сварочного

Оглавление:

Деревня Глазово, дом 7 🙂

История реставрации деревенского участка

Сварка для чайника или почему надо писать на заземление

Как-то мне один электрик сказал, что если у твоего заземления пропали Омы, просто пописай на него. Шутка-шуткой, но в шутке скрывается правильная истина. Влажный грунт имеет куда большую токопроводность, чем сухой. И соответственно, заземление тоже будет работать на порядок лучше.

Закапывая дренажную трубу я вдруг подумал, а почему-бы не сделать заземление прямо рядом с ней? Во-первых, грунт частично раскопан и вбивать металлические уголки будет проще. Во-вторых, металл будет находится скорее всего в постоянно влажной почве и заземление будет работать лучше. Да, коррозия тоже будет лучше. Но сколько времени потребуется, чтобы сгнить стали толщиной 5-ть миллиметров? Предположу, что не менее 20-и лет. Достаточно раз в 5-ть лет замерять сопротивление заземления и принимать решение: делать новое или жить с этим. Пусть это будет экспериментом, подумал я, и поехал на рынок за уголками.

Обычно, уголки для заземления берут длиной 2,5 метра. Но это обычно. Я, как всегда, пошёл самым сложным путём и купил 4-х метровые! Херли 4-е метра и не забить

Забили, но уже на последних ударах не выдержала фиберглассовая ручка кувалды и сломалась:

Теперь над анекдотами про сломанную кувалду я не смеюсь. Не смешно, когда 5-ть килограммов металла может упасть тебе как град на голову.

Ну а дальше предстояла самая малость — обварить три уголка металлической лентой, так, чтобы они все три были единым целым. Сложность заключалась в том, что я: а) ни разу вообще не варил и даже не представляю как это делать; б) сварщиков в ближайшем окружении не нашлось, ровно как и сварочного аппарата. Но разве сложности меня могут остановить? Хрен!

Изначально мне предложили любой сварочный аппарат и маску, но т.к. я совершенно в этом вопросе полный профан, то и попросил дать комплект, с которым полный профан сможет справиться.

Сварочный инвертор оказался невероятно маленьким и удаленьким:

У меня было впечатление, что провода к нему весят даже больше, чем сам инвертор:

С ним уже шла в комплекте обычная маска для сварщика:

Но в ней обычное тёмное стекло. Без регулировок. Начинающему сварщику работать с такой маской будет крайне тяжело. Каждый раз, фактически в слепую, придётся начинать шовчик, рискуя попасть электродом не туда.

Видимо поэтому, мне в комплекте выдали маску МСХ-13/3 ЕП:

На лицевой стороне маски два маленьких отверстия — это датчики дуги. Солнечная батарея — основной источник питания, который может дублироваться резервными батарейками, если вы их поставите:

Слева регулировка степени затемнения. От 9-и до 13 DIN:

Внутри маски регулировка чувствительности(слева) и скорости возвращения в исходное(светлое) состояние стекла:

Согласно инструкции маски надо зарядить её 20-30 минут, перед использованием:

Лежит на солнышке, заряжается через солнечную батарею:

Скажу честно. Начинать было страшно. Совершенно не понятно, работает ли маска с регулировками и как это проверить?! Какие регулировки надо выставлять? А вдруг она бракованная или не зарядилась и я получу травму глаз? А может ли травма от дуговой сварки значительно повредить моё зрение? А может ли меня ударить током? Даже сама мысль, что в твоих руках ток в 200 Ампер совершенно не радовала. Короче, ссыкотно, но отступать было некуда. Решил начать работу с маской без регулировок, там тупое тёмное стекло, оно однозначно работает. Это было видно воочию. А мой помощник, на расстоянии 5-и метров, посмотрит через вторую маску, с регулировками, и проверит, затемняется ли там стекло, когда я начинаю сварку.

Как вы думаете, что произойдёт, когда полный чайник, практически в слепую(а через чёрное стекло ничего не видно вообще) начнёт сварку? Правильно! Куча искр и в итоге электрод прикипел к металлу:

Это называется «залип». Не смотря на то, что у данного аппарата есть функция антизалипания, но видимо мой лохизм таки её переборол.

Ещё несколько попыток и стало понятно, что перспективы сварить сегодня хоть что-нибудь — нулевые. Начал обзванивать всех друзей из списка контактов в надежде получить инструкцию и наставления по телефону. Представляете картину? Суббота, солнышко, раннее утро и тут вам кто-то звонит и начинает спрашивать: «чувак, какие настройки надо выставить на маске сварщика, что такое ДИН-ы и как вообще варить, чтобы не убиться током и не ослепнуть?» К сожалению, «звонок другу» не дал результата, т.к. ВСЕ мои контакты оказались с такими же нулевыми познаниями в этом вопросе, как и я. Ситуация патовая. Что делать?!

Очевидно, надо искать сварщика. Но где я его найду утром субботы?! Решили просто выйти на улицу и ловить всех мужиков и допрашивать И что вы думаете, ПЕРВЫЙ попавшийся мужик оказался дипломированным газо- и электро- сварщиком! Нашему шоку и удивление не было предела! Затащили его к себе на участок и настойчиво попросили показать лохам, как надо сваривать

Первым делом сварщик выкрутил регулятор тока практически до упора:

Взял маску с обычным стеклом и начал сваривать. Через 5-ть минут я отогнал его «перекурить», т.к. такими темпами мои перспективы научиться варить растаяли бы за 5-ть минут. Попробовал сам, а его попросил прокомментировать, что я делаю не так.

И о чудо, у меня тоже пошла сварка! Предположу, что при малом токе, надо было держать дугу очень и очень деликатно. Что понятное дело, для полного лоха крайне затруднительно. Вот электрод мой и прилип. А при большем токе, дуга начинается значительно заранее и не опытной рукой варить проще. Шовчик мой получился конечно крайне сопливым, но после 5-и минут болгарки мой шов от шва профессионального сварщика уже не отличить:

После остывания стали, наношу из баллончика краску, дабы защитить сварной шов от преждевременной коррозии:

Как мне кажется, получилось очень не плохо.

Расходы на заземление:

1) Уголок металлический 50*5 * 4 метра — 3 штуки — 1’680 рублей.
2) Резка уголков газом — 45 рублей.
3) Полоса металла 60*6 * 2 метра — 300 рублей.
4) Резка полосы газом — 20 рублей.
5) Электроды 3 мм — 150 рублей.
6) Сгоревшая пицца, когда писал пост — 1 штука.

Итого: 2’195 рублей.

Остался очень интересный вопрос. Как теперь замерить сопротивление получившегося заземления?!

Переносное заземление сварочного агрегата

Рекомендованные сообщения

Создайте аккаунт или войдите в него для комментирования

Вы должны быть пользователем, чтобы оставить комментарий

Создать аккаунт

Зарегистрируйтесь для получения аккаунта. Это просто!

Уже зарегистрированы? Войдите здесь.

Сейчас на странице 0 пользователей

Нет пользователей, просматривающих эту страницу.

заземление на сварочнике 220вольтов

Рекомендованные сообщения

Создайте аккаунт или войдите в него для комментирования

Вы должны быть пользователем, чтобы оставить комментарий

Создать аккаунт

Зарегистрируйтесь для получения аккаунта. Это просто!

Уже зарегистрированы? Войдите здесь.

Сейчас на странице 0 пользователей

Нет пользователей, просматривающих эту страницу.

Заземление сварочного оборудования. Безопасность при сварке

Что такое заземление?

Защитное заземление – это соединение частей электрического устройства с землей. Например, корпуса сварочного трансформатора металлическим проводом.

Насколько важно заземление?

Заземлять необходимо любое электрооборудование, технику или приборы, чтобы избежать удара электрическим током при прикосновении к металлическим частям устройств.

Заземление электрических цепей является обязательной мерой безопасности, которая документирована в различных нормах и стандартах.

Заземление корпуса устройства снижает напряжение тока в случае повреждения его электрической изоляции.

Заземление уравнивнивает потенциалы металлического корпуса устройства и земли. Равный потенциал означает, что одновременное касание обоих объектов не приведет к поражению электрическим током.

Как осуществляется заземление сварочного оборудования?

Осмотрите корпус сварочного трансформатора тщательно. На кожухах трансформатора должны располагаться специальные болты, которые называются «болтами заземления». Как правило, рядом с ними присутствует соответствующая надпись.

Заземление должно выполняться с помощью медной проволоки, поперечное сечение которой составляет не менее 6 миллиметров или небольшого стального стержня (вы также можете взять стальную ленту), сечение которого составляет не менее 12 миллиметров.

Сварочные материалы и оборудование Вы можете приобрести на нашем сайте — сварочные электроды и сварочное оборудование.

Как правильно работать инвертором

Сварочное оборудование на сегодняшний день представлено множеством разновидностей. Но наибольшую популярность среди домашних мастеров получили инверторные аппараты в силу своей компактности и универсальности. Сварочный инвертор является оборудованием, позволяющим мастеру выполнять разного рода сварочные работы. Но чтобы проводить их качественно, недостаточно иметь дорогостоящий агрегат, нужно еще и научиться пользоваться сварочным аппаратом.

Установка и подключение агрегата

Чтобы эффективно и безопасно использовать инвертор, прежде всего, необходимо правильно подготовить его к работе. Этот процесс проводится в несколько этапов. Первая задача – это установка и подключение агрегата. Установка инвертора должна выполняться по определенным правилам:

  • агрегат нужно размещать так, чтобы он находился на расстоянии не менее 2 м от стен или каких-либо предметов;
  • аппарат должен быть обязательно заземлен;
  • место сварки нужно выбирать так, чтобы оно было вдали от воспламеняющихся предметов;
  • варить рекомендуется либо на свободной площадке, либо на столе из металла.

Подключить инвертор можно как к бытовой сети (220 В), так и к сети, с напряжением 380 В, которая обычно используется на производстве. Если предполагается использовать агрегат вдали от электрических сетей, то его можно подключить к генератору, дизельному или бензиновому.

Подключение к электросети

Подключение сварочного аппарата к бытовой электросети нередко вызывает проблемы. Причиной их возникновения может быть старая проводка или недостаточный диаметр ее проводов. Обычно проводка рассчитана на ток до 16 А. А поскольку все включенные приборы в доме могут превысить это значение, то в целях безопасности устанавливаются автоматические выключатели (автоматы). Поэтому при подключении необходимо знать мощность сварочного аппарата, чтобы он не вызвал срабатывание автомата.

Подключение инвертора к бытовой сети

Также следует обратить внимание на просадку сети. Если при включении инвертора вы заметите понижение напряжения в электросети, то это говорит о недостаточном сечении проводов. В таком случае необходимо измерить, до каких значений понижается напряжение. Если оно падает до значений ниже минимальных, с которыми может работать инвертор (указано в инструкции), то подключать аппарат к такой сети нельзя.

Использование удлинителя

Сетевой кабель, подсоединенный к инвертору, отвечает всем требованиям по мощности и не вызывает проблем при подключении. Но если его длины не хватает, то следует подбирать удлинитель с сечением провода не менее 2,5 мм 2 и длиной не более 20 метров. Таких параметров удлинителя будет достаточно, чтобы инвертор мог работать с током до 150 А.

Смотрите так же:  35 ампер сечение провода

Следует помнить, что при подключении аппарата к сети через переноску оставшуюся ее часть не следует держать смотанной, поскольку при включении агрегата она превратится в катушку индуктивности. В результате проводники перегреются, и удлинитель выйдет из строя.

Подключение к генератору

В случаях, когда нет возможности подключить аппарат к электросети, можно подсоединить его к генератору, работающему либо на бензине, либо на дизельном топливе. Наибольшее распространение получили бензиновые электростанции. Но для подключения сварочных аппаратов подходят не все их них. Чтобы инвертор мог эффективно работать, генератор должен иметь мощность не менее 5 киловатт и выдавать стабильное напряжение на выходе. Перепады в напряжении могут вывести сварочник из строя.

Также следует учитывать, с каким диаметром электрода вы будете работать. Например, если электрод будет иметь диаметр 3 мм, то потребуется рабочий ток около 120 А с напряжением дуги 40 В. Если рассчитать мощность сварочного инвертора (120 х 40 = 4800), то получим значение 4,8 кВт. Поскольку это будет потребляемая мощность, то электростанция, способная выдавать лишь 5 кВт, будет работать на пределе своих возможностей, что значительно снизит ее срок службы. Поэтому генератор нужно выбирать с некоторым запасом по мощности, примерно на 20-30% выше той, которую потребляет инвертор.

Подключение сварочных кабелей

На передней панели инвертора расположены 2 клеммы, возле которых имеется маркировка в виде знаков “+” и “-”. К данным клеммам подсоединяются сварочные кабели, один из которых на конце имеет металлический зажим (прищепку), а второй – держатель для электрода. И тот и другой кабель может подключаться к обеим клеммам, в зависимости от метода сварки, о чем будет говориться далее. После подключения кабелей к аппарату один из них, имеющий прищепку, подсоединяется к сварочному столу или к заготовке.

В некоторых случаях стандартной длины кабелей может не хватать, например, при работах на высоте. В таких ситуациях возникает вопрос: можно ли удлинить сварочный кабель? Профессионалы не советуют этого делать, особенно, если это касается инверторного аппарата. Объяснить этот факт можно тем, что каждый кабель имеет определенные характеристики сопротивления. Поэтому неизбежны “утечки” напряжения и силы тока по всей его длине. Следовательно, чем больше длина кабеля, тем сильнее проседает напряжение.

Если попытаться компенсировать потери напряжения и силы тока прибавлением значений на панели агрегата, то эта мера, скорее всего, выведет электронику инвертора из строя. Получается, что проще поднести аппарат ближе к рабочему месту сварщика, чем потратить немалую сумму на ремонт агрегата после удлинения кабелей.

Настройка аппарата

От того, корректно ли произведена настройка сварочного инвертора, зависит качество сварочных работ, особенно это касается правильного выбора электродов. Также следует учитывать:

  • глубину сварочного шва;
  • расположение шва в пространстве (вертикальное или горизонтальное);
  • марку или тип свариваемого металла;
  • толщину металла и т.д.

Следует знать, что под каждый тип металла выпускаются соответствующие электроды. С инверторами можно использовать электроды диаметром до 5 мм. Но под каждую толщину оснастки необходимо подбирать соответствующую ей силу сварочного тока. Чтобы правильно настроить сварочный аппарат, можно воспользоваться таблицей, приведенной ниже.

Например, если вам предстоит варить инвертором мягкую сталь толщиной 5 мм, то следует подобрать электрод 3 мм, а на аппарате выставить силу тока, равную 100 А. После пробной сварки силу тока можно подкорректировать, то есть уменьшить либо увеличить.

Меры безопасности при работе

Установленные правила безопасности, можно сказать, написаны “кровью” пострадавших, и поэтому пренебрегать ими строго запрещается. От их соблюдения зависит здоровье и жизнь не только оператора сварочного оборудования, но и окружающих его людей. Итак, к правилам безопасности можно отнести следующее.

  1. Перед началом работы следует проверить целостность изоляции на всех проводах и кабелях, подсоединенных к аппарату. Также необходимо проверить исправность оборудования, а именно, убедиться, что напряжение холостого хода равняется нулю. В данном случае должна быть исправна система, отключающая напряжение на электроде, когда аппарат простаивает.
  2. Перед подключением оборудования следует проверить электрическую сеть под нагрузкой (измерить диапазон проседания).
  3. Для защиты сетчатки глаз от ультрафиолетового излучения, возникающего при горении сварочной дуги, необходимо применять защитную маску (щиток) либо специальные очки. Не так давно в продаже появились сварочные маски и очки со стеклами “хамелеонами”, которые автоматически затемняются при попадании на них яркого излучения. Очки или маску должен одевать не только сварщик, но и его помощник.

  • Если сварочные работы проводятся в закрытом помещении, то для защиты органов дыхания и предотвращения отравления вредными газами применяют респираторы со сменными картриджами либо маски, через которые принудительно подается очищенный воздух.
  • Для защиты рук от брызг металла используют специальные перчатки — краги сварщика.

  • Для защиты тела используют комбинезоны, куртки и штаны из огнеупорной ткани.
  • Для защиты ног требуется одевать высокие ботинки, чтобы исключить попадание в них искр металла. Ботинки должны прикрываться сверху штанами.
  • Рабочее место должно быть хорошо освещено.
  • Под ногами сварщика должен быть резиновый коврик или деревянный настил, предотвращающие человека от удара током.
  • Вокруг рабочего места не должно находиться никаких посторонних предметов, через которые можно споткнуться.
  • Вблизи рабочего места должен находится песок и огнетушитель для своевременного тушения очага возгорания.
  • Заземление сварочного аппарата является обязательным условием.
  • Если правила безопасности уже изучены, то можно приступать к ознакомлению с тем, как правильно работать электросваркой.

    Выбор полярности

    Не секрет, что процесс плавления металла происходит из-за высокой температуры электрической дуги, возникающей между свариваемым материалом и электродом. При этом кабель с держателем для электрода и кабель массы (с прищепкой) подсоединены к разным клеммам аппарата. Чтобы правильно подключить кабеля, необходимо понимать, в каких случаях они меняются местами.

    При сварке инвертором или любым другим сварочным агрегатом используется прямая и обратная полярность подключения кабелей к аппарату. Прямой полярностью принято называть подключение, когда кабель с электродом подсоединяется к минусу, а свариваемый металл – к плюсу.

    Такой способ подключения позволяет металлу хорошо прогреваться, отчего шов получается глубоким и качественным. Метод прямой полярности используют при варке толстых металлических изделий.

    Обратная полярность подразумевает подключение электродного кабеля к плюсу, а кабеля массы – к минусу.

    При таком подключении металл прогревается меньше, а шов поучается более широким. Обратную полярность принято использовать при варке тонких металлических изделий, чтобы исключить сквозной прожиг детали.

    Выбор сварочного тока

    Сварочный ток выбирается с учетом толщины металла, который подлежит сварке, и диаметра присадки. Для простоты расчетов можно использовать таблицу, которая была приведена выше, в разделе, где говорилось о настройке агрегата. Также при выборе оптимальной силы тока следует помнить правило: чем выше сила тока, тем глубже получается шов, и тем быстрее можно перемещать электрод. Поэтому нужно добиться идеального соотношения скорости движения присадки и силы тока, чтобы шов имел требуемую выпуклость и глубину, достаточную для хорошего сваривания кромок деталей.

    Методика работы с разными металлами

    Поскольку без розжига дуги процесс сварки невозможен, то следует знать, что существует 2 метода сделать это:

    • нужно несколько раз стукнуть по металлу электродом, пока не произойдет зажигание дуги.
    • нужно электродом, как спичкой, чиркнуть несколько раз по металлу.

    Каждый мастер подбирает наиболее удобный и подходящий способ зажигания дуги. Но чиркать нужно не где попало, а вдоль линии сварного шва, чтобы на заготовке не оставались следы.

    Место, в котором плавится металл под воздействием электрической дуги, называют сварочной ванной. Чтобы ее двигать вдоль линии шва, применяют один из методов, показанных на следующем рисунке.

    Для нормального движения ванны электрод наклоняется под углом 45-50°. Наклоняя присадку под разными углами, можно управлять шириной ванны. Каждый мастер подбирает оптимальный угол наклона для получения шва приемлемого качества.

    Электрод может принимать положение углом назад или углом вперед. Чтобы получить широкий шов, используется наклон оснастки углом вперед, поскольку при таком способе получается меньший нагрев. Данным методом варят тонкие металлы. Толстый металл принято варить углом назад.

    Для сварки цветных металлов придется подключить аргоновую горелку к сварочному инвертору и использовать уже неплавящийся электрод (вольфрамовый). Присадкой в данном случае служат металлические прутки, которые помещаются на линию шва и плавятся электрической дугой. В процессе сварки ванна обдувается инертным газом.

    Правила обслуживания инверторного аппарата

    Техническое обслуживание сварочного аппарата инверторного типа, включает в себя следующие пункты.

    1. Внешний осмотр. Его необходимо проводить каждый раз перед началом работы и после нее для обнаружения возможных повреждений изоляции сварочных кабелей и сетевого шнура. Также при внешнем осмотре проверяется отсутствие повреждений корпуса и органов управления (нужно проверить регулятор тока).
    2. Проведение внутренней очистки агрегата. Проводится она после снятия кожуха с аппарата для удаления из всех его узлов пыли и накопившихся загрязнений. Очистка производится с помощью направленного потока сжатого воздуха на запыленные детали.
    3. Проверка и зачистка клемм аппарата. Периодически следует проверять места, к которым подсоединяются силовые кабели. Если на клеммах обнаружено окисление, его следует удалить с помощью мелкой наждачки.

    Также следует избегать попадания на инверторный сварочный аппарат капель воды, водяных паров и других жидкостей, способных проникнуть внутрь агрегата и вызвать замыкание электрических цепей. Если какая-либо жидкость все же проникла в аппарат, то следует снять с него кожух и удалить всю влагу. Особенно тщательно следует высушить электронную плату инвертора, используя обычный фен.

    Заземление сварочного

    Заземление. Что это такое и как его сделать (часть 3)

    1 часть. Заземление
    (общая информация, термины и определения)

    2 часть. Традиционные способы строительства заземляющих устройств
    (описание, расчёт, монтаж)

    3 часть. Современные способы строительства заземляющих устройств
    (описание, расчёт, монтаж)

    В этой части я расскажу о современных способах строительства заземлителей, которые обладают достоинствами традиционных способов строительства и лишены их недостатков.

    Д. Основные способы строительства

    Д1. Модульное заземление (для обычных грунтов)

    Д1.1. Особенности решения
    Д1.1.1. Универсальность и простота применения
    Д1.1.2. Долгий срок службы
    Д1.1.3. Зависимость уменьшения сопротивления заземления от увеличения глубины электрода
    Д1.1.4. Суперкомпактность
    Д1.1.5. Никакой сварки
    Д1.2. Расчёт получаемого сопротивления заземления
    Д1.3. Монтаж
    Д1.4. Достоинства и недостатки

    Д2. Электролитическое заземление (для вечномёрзлых или каменистых грунтов)

    Д2.1. Особенности решения
    Д2.1.1. Простота применения в вечномёрзлых или каменистых грунтах
    Д2.1.2. Компактность
    Д2.1.3. Образование талика
    Д2.1.4. Никакой сварки
    Д2.2. Расчёт получаемого сопротивления заземления
    Д2.3. Монтаж
    Д2.4. Достоинства и недостатки

    Д. Основные способы строительства

    Несколько коротких электродов (п. Г1.4)

    Достоинства:

    • простота
    • дешевизна материалов и монтажа
    • доступность материалов и монтажа

    Недостатки:

    • высокая стоимость доставки материала на объект
    • необходимость применения большого объема грубой силы
    • необходима сварка
    • большая площадь, занимаемая заземлителем
    • небольшой срок службы электродов в 5-15 лет
    • неудобный монтаж

    Одиночный глубинный электрод (п. Г2.4)

    Достоинства:

    • высокая эффективность
    • компактность
    • сезонная НЕзависимость качества заземления

    Недостатки:

    • высокая стоимость буровых работ
    • необходима сварка
    • небольшой срок службы электродов в 5-15 лет

    Остановился я на общих словах:
    В конце двадцатого века было разработано решение, которое обладает достоинствами обоих описанных выше способов, не имея присущих им недостатков.

    Кроме того, сильное влияние засоления грунта на снижение сопротивления заземления (п. Г1.5.) настолько привлекло внимание инженеров, что было найдено “лекарство” от недостатков этого метода — вымывания соли из грунта и коррозии электродов. Оно породило очень интересный способ строительства заземлителя, применимый даже там, где пасуют простые металлические электроды — в вечномёрзлых, а также каменистых грунтах.

    Д1. Модульное заземление (для обычных грунтов)

    Идеальным сочетанием вышеописанных свойств способов строительства был бы какой-то способ, имеющий такой набор:

    Достоинства:

    • простота
    • дешевизна материалов и монтажа
    • доступность материалов и монтажа
    • высокая эффективность
    • компактность
    • сезонная НЕзависимость качества заземления

    Недостатки:

    • нет

    Увы, чудес не бывает! 🙂
    Тем не менее, чего бы нам хотелось:

    • сократить длину (глубину) монтируемых заземляющих электродов для удобства их ручного монтажа (чтобы не забивать эти электроды со стремянки)
    • оставить большую длину (глубину) заземляющих электродов
    • убрать буровую установку
    • убрать кувалду
    • убрать сварку
    • увеличить срок службы электродов без увеличения размеров до… ну пусть будет 100 лет 🙂
    • сохранить адекватную стоимость материалов.

    Немного фантастично, но решение оказалось простым: технология, получившее название “модульное штыревое заземление”, сокращено “модульное заземление”

    При таком способе строительства заземляющий электрод необходимой длины (глубины) представляет собой сборную конструкцию из нескольких коротких (1,5 метра) стальных штырей-модулей, имеющих небольшие поперечные размеры (диаметр менее 20 мм) с цинковым или медным покрытием, которые соединяются последовательно друг за другом. Для заглубления используется обычный бытовой электрический отбойный молоток с достаточной энергией удара.

    Как и в случае “обсадной трубы” (п. Г2) — большая площадь контакта заземлителя с грунтом достигается большой длиной (глубиной) электрода. За счет достижения глубинных слоев грунта, в большинстве случаев имеющих меньшее удельное электрические сопротивление, такой способ имеет большую эффективность (меньшее сопротивление заземления).

    Соединение штырей между собой может производится несколькими способами:

      «глухое отверстие + шип». На одной стороне штыря имеется глухое отверстие глубиной 50-70 мм, а на другой стороне — шип длиной 50-70 мм, имеющий диаметр чуть больше паза. При монтаже шип запрессовывается в отверстие.

    «глухое отверстие + штифт + глухое отверстие». Штырь с обоих сторон имеет глухое отверстие глубиной 50-70 мм. Штифт длиной 100-140 мм используется в виде отдельной дополнительной детали. При монтаже он вставляется между штырями и запрессовывается в оба отверстия.
    Считается весьма ненадежным способом соединения.

    «резьба + муфта + резьба». Штырь с обоих сторон имеет резьбу длиной 50 мм. Муфта, отрезок трубы с внутренней резьбой, используется в виде отдельной дополнительной детали. При монтаже она накручивается на заглубляемый штырь, после чего в нее закручивается следующий штырь.
    Как показала многолетняя практика — это наиболее надежный способ соединения, позволяющий монтировать сборные заземляющие электроды до 40 метров глубиной с гарантированным сохранением необходимых электрических и антикоррозионных свойств по всех длине.

    Такая глубина является компромиссом между максимальной энергией удара отбойного молотка, силой трения между монтируемым электродом и грунтом, механической прочностью муфты (её стоимостью). Без увеличения энергии удара невозможно еще большее заглубление электрода из-за силы трения. При увеличении энергии удара необходимо увеличивать прочность муфты, что вызывает увеличение её стоимости.


    Д1.1. Особенности решения. Антикоррозионные свойства.
    Д1.1.1. Универсальность и простота применения

    Это решение можно назвать “конструктором”, т.к. из унифицированных элементов собирается любая необходимая конструкция. Например, глубинный электрод на 30 метров.
    Все детали имеют промышленное производство, что убирает необходимость что-то “допиливать” на объекте. При этом они имеют одинаковое качество и одинаковые свойства, что играет роль при проведении большого объёма монтажных работ на множестве однотипных объектах, а также положительно влияет на предсказуемость результатов.

    Обращение со штырями облегчено, т.к. они имеют длину всего 1,5 метра и вес не более 3-х килограмм. Это позволяет перевозить их в небольшом легковом автомобиле.

    Д1.1.2. Долгий срок службы

    Покрытие стального штыря слоем цинка или меди увеличивает его срок службы до нескольких раз (относительно срока службы штыря таких же размеров без покрытия).

    Способы защиты стали от коррозии у покрытий сильно различаются из-за разного участия этих металлов в электрохимических реакциях, оказывающих наиболее разрушительное влияние на штырь. Из-за разности этих реакций, разности производства, разности стоимости производства — ведутся постоянные споры, какое покрытие всё-таки лучше.

    В паре “цинк-железо” цинк является восстановителем/ донором (wiki). Окисляется/ корродирует прежде всего именно цинк, защищая, таким образом, железо.

    Когда вся его масса проучаствует в реакции (окислится) — начнет корродировать сталь.

    Достоинства:

    • отсутствие необходимости механической защиты покрытия при монтаже. Повреждение целостности покрытия не приводит к последствиям, т.к. цинк всё равно защищает железо, находясь рядом.
    • дешевое, налаженное и широко распространенное производство оцинкованных изделий со стандартной для этого материала толщиной покрытия от 5 до 30 мкм (“горячее” и “холодное” цинкование)
    • антикоррозийная защита не только штырей, но и всех металлоконструкций в зоне действия. Однако эти металлоконструкции чаще всего не нуждаются в такой защите.

    Недостатки:

    • сравнительно небольшое увеличение срока службы штыря из-за малой толщины покрытия — до 15-25 лет.
    • Толстый слой цинкового покрытия имеет высокую стоимость. Кроме того, очень редко встречается производство, имеющее техническую возможность для этого.
    • сокращение срока службы штырей в присутствии большого количества металлоконструкций, расположенных рядом с ними

    Медное покрытие

    В паре “медь-железо” медь является окислителем, а железо — восстановителем/ донором (wiki). Окисляется/ корродирует прежде всего железо, защищая таким образом медь.

    Странно… нам необходимо противоположное действие. Но тут кроется особенность электрохимической реакции: она возможна только в присутствии электролита/ воды. Если железо изолировать от него, то реакция останавливается.

    Поэтому медное покрытие должно быть толстым и однородным для того, чтобы не допустить его глубокого повреждения при монтаже и таким образом не допустить попадания электролита/ воды к железу.

    При этом положительно сказывается мягкость/ пластичность чистой меди: она сильно уменьшает силу трения при сцарапывании, что не позволяет острому элементу в грунте (например, камню) полностью процарапать покрытие по глубине — до стального сердечника. Камень просто скользит по поверхности, снимая небольшой наружный слой. Такое поведение меди можно сравнить с мылом, используемым для снятия застрявшего на пальце кольца.

    Достоинства:

    • очень большой срок службы омеднённого штыря — до 100 лет (при соблюдении целостности покрытия)

    Недостатки:

    • необходимость создания покрытия большой толщины (от 200 мкм) для его защиты от глубокого повреждения при монтаже. Такое покрытие дороже более тонкого.
    • дорогостоящее и редкое производство омеднённых изделий с большой толщиной покрытия

    Моё субъективное мнение
    Раз уж добавляем покрытие для защиты от коррозии, то оно должно обеспечивать наиболее долгий срок службы при одинаковой стоимости производства (в сравнении с другими вариантами).
    В этой плоскости я считаю, что лучшим выбором являются омеднённые штыри при условии безоговорочного качества покрытия, выраженного в:
    — толщине не менее 200 мкм
    — высокой адгезии (wiki) обеспечивающей сохранение защитного слоя при изгибе штыря (иногда встречается при монтаже)
    Причём омеднённые штыри гораздо выгоднее оцинкованных из-за высоких цен на изготовление последних при стремлении достигнуть сопоставимый срок службы.

    Испытания, проведённые одной из лабораторий экспериментально показали, что срок службы омеднённого штыря с покрытием толщиной 250 мкм в агрессивном грунте (кислом или щелочном) составляет не менее 30 лет, а в обычном суглинке достигнет 100 лет.

    Также известно испытание, проведённое с 1910 по 1955 год Национальным Институтом Стандартов и Технологий США (The National Institute of Standards and Technology (NIST)). Было реализовано обширное исследование подземной коррозии, во время которого 36 500 образцов, представляющих 333 разновидности покрытий из черных и цветных металлов и защитных материалов, подвергались испытанию в 128 местах по всей территории Соединенных Штатов.
    Одним из результатов этого исследования стал факт, что штырь заземления, покрытый 254 мкм меди, сохраняет свои технические характеристики в течение более 40 лет в большинстве типов почвы. А стержневые электроды, покрытые 99,06 мкм цинка, в этих же грунтах могут сохранять свои качества лишь в течение 10-15 лет.
    Underground corrosion (United States. National Bureau of Standards. Circular 579)
    Автор: Melvin Romanoff; Издатель: U.S. Govt. Print. Off., 1957)
    Отдельно хочу отметить использование в качестве материала штырей нержавеющей стали . Этот материал имеет замечательные антикоррозионные свойства в сочетании с отличными механическими характеристиками , облегчающими производство деталей. Его единственный, но перечеркивающий достоинства недостаток — высокая стоимость .

    Д1.1.3. Зависимость уменьшения сопротивления заземления от увеличения глубины электрода

    Т.к. данное решение имеет все свойства глубинного заземлителя напомню его особенность (из п. Г2.1).
    При увеличении глубины электрода необходимо учитывать, что в однородном грунте сопротивление заземления снижается не пропорционально этому увеличению (больше глубина -> меньше уменьшение сопротивления).

    Поэтому при отсутствии на глубине слоев грунта с более низким удельным электрическим сопротивлением стоит рассмотреть вопрос увеличения количества электродов, а не увеличения глубины одиночного электрода. На решение этого вопроса будут влиять и стоимость монтажа дополнительных электродов, и доступность площади для их размещения.

    На практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности.

    Д1.1.4. Суперкомпактность

    Небольшая длина штырей и использование небольшого по величине электроинструмента позволяет монтировать глубинные заземлители там, где раньше это было в принципе невозможно: на объектах при самой стеснённой внутриквартальной застройке и даже в подвалах зданий. При проведении работ вне здания для заглубления электрода достаточно “пятачка” земли диаметром 20 см.

    Такая компактность особенно актуальна в свете необходимости получения большого количества документов на вскрытие покрытия, проведения работ и последующего облагораживания территории.

    Д1.1.5. Никакой сварки

    Все элементы конструкции надежно сопрягаются без электро или газосварки. Используются либо неразъёмные, либо резьбовые соединения. Для присоединения к смонтированному электроду заземляющего проводника используется специальный болтовой зажим из латуни или нержавеющей стали.

    Д1.2. Расчёт получаемого сопротивления заземления

    Расчёт почти полностью повторяет расчёт одиночного электрода из п. Г2.2. за исключением поперечных размеров — у модульного заземления диаметр электрода не превышает 20 мм.
    На примере тридцатиметрового составного электрода из омеднённых штырей диаметром 14 мм, смонтированного в канаве глубиной 0,5 метров. Грунт, в котором будет монтироваться этот электрод, будет для упрощения расчёта однородным суглинком, обычным для России, с удельным электрическим сопротивлением 100 Ом*м.

    Расчёт проводится в 1 этап.

    Сопротивление заземления одиночного вертикального заземляющего электрода вычисляется по формуле:

    R1 составит 4,7 Ом (при p = 100 Ом*м, L = 30 м, d = 0.014 м (14 мм), T = 15.5 м (T — расстояние от верхнего уровня грунта до середины заглубленного электрода)).

    Этот результат хуже, чем у электрода, имеющего диаметр 100 мм, но замечу — уменьшение диаметра электрода в 7 раз (700%) вызвало увеличение сопротивления заземления всего на 27%.

    Д1.3. Монтаж

    Монтаж модульного заземления очень лёгкий и доступен даже девушке.
    Штыри забиваются в грунт друг за другом отбойным молотком постепенно увеличивая глубину заземляющего электрода. Отбойный молоток размещается над штырём.
    Задачи монтажника: ровно держать молоток над штырём (не “на весу”, т.е. молоток своим весом давит не на руки, а на монтируемый штырь) и наращивать электрод — устанавливать следующий штырь над уже заглубленным.

    Если монтаж выполняется вне здания то, монтаж модульного заземления/ заземлителя производится в канаве небольшой длины и глубиной 0.5 метра в которую также укладывается заземляющий проводник (медный провод или традиционная стальная полоса), идущий до объекта (электрощита).

    Если монтаж выполняется внутри здания (в подвале), то монтаж заземлителя производится на уровне пола. Далее медным проводом полученный заземлитель подключается к щиту.

    И при использовании стальной полосы и при использовании медного провода для их соединения со штырём в основном используется болтовой зажим из латуни или нержавеющей стали.

    Иногда можно встретить способ соединения с помощью экзотермической сварки (смесь горючего материала с медной пылью заливает место контакта проводника и штыря, сваривая их между собой). Но это экзотика.
    Подробнее о монтаже резьбовых штырей можно познакомиться на YouTube (ссылка). UPD: Отбойный молоток можно взять в аренду на сутки (от 500-700 рублей) или купить почти в любом магазине электроинструмента (от 9-10 т.руб.).

    Д1.4. Достоинства и недостатки

    Достоинства:

    • простота и лёгкость монтажа. Все операции производит без серьёзного физического труда один человек без особой подготовки.
    • высокая эффективность заземлителя, обеспечивающая низкое сопротивление заземления
    • суперкомпактность, позволяющая монтировать заземлитель на очень маленькой площадке или в подвалах
    • большой срок службы заземляющего электрода (до 100 лет в суглинке)
    • сезонная НЕзависимость качества заземления. Зимой из-за промерзания грунта сопротивление такого заземлителя почти не изменяется из-за нахождения в зоне промерзающего грунта не более 5-10% длины электрода.
    • не нужна сварка. Элементы конструкции надежно сопрягаются без неё.

    Недостатки:

    • невозможность монтажа электрода в каменистом грунте. Гвоздь не забить в камень.
      Штырь за счёт высокой механической прочности конструкции может отодвинуть небольшой камень, встреченный на своём пути. Может, изогнувшись в сторону от контакта по касательной с большим камнем, продолжить заглубление не по вертикальной оси. Но попав в достаточно большой камень без возможности отклониться — он встанет.
    • сравнительно высокая цена омеднённых штырей (около 380 рублей за метр) и дополнительной комплектации к ним. Цена много ниже стоимости буровых работ, но она однозначно выше цен на чёрный металлопрокат, используемый при строительства традиционного многоэлектродного заземлителя.
      Однако объективнее сравнивать не “голую” стоимость материалов, а стоимость всех затрат при строительстве заземлителя. Часто оказывается, что суммарные затраты сопоставимы или даже ниже именно у модульного заземления (например, за счёт банальной экономии на доставке материалов на объект).

    Д2. Электролитическое заземление (для вечномёрзлых или каменистых грунтов)

    Д2.1. Особенности решения
    Д2.1.1. Простота применения в вечномёрзлых или каменистых грунтах
    Д2.1.2. Компактность
    Д2.1.3. Образование талика
    Д2.1.4. Никакой сварки
    Д2.2. Расчёт получаемого сопротивления заземления
    Д2.3. Монтаж
    Д2.4. Достоинства и недостатки

    Напомню об отмеченном в п. Г1.5. методе иногда применяемом для существенного уменьшения сопротивления заземления .
    Засоление грунта в месте размещения электродов путем добавления в него большого объема поваренной соли NaCl. При её растворении в грунте (выщелачивании (wiki)) резко повышается концентрация ионов, участвующих в переносе заряда, а следовательно снижается его (грунта) электрическое сопротивление.

    При неоспоримом положительном достоинстве такого метода, а также при его простоте и дешевизне — он имеет два огромных недостатка:

    • за счет вымывания соли из грунта (дожди, весеннее таяние снега), концентрация ионов падает до естественного уровня за 2-3 года
    • соли вызывают сильную коррозию стали, разрушая электроды и заземляющий проводник за 3-5 лет. Эти недостатки грозят восстановлением заземлителя практически “с нуля”.


    Нужны были меры противодействия этим недостаткам и ими стали:

    • постоянное поддержание концентрации ионов в грунте. Иными словами, их пополнение новыми порциями.
    • использование в конструкции материалов, минимально подверженных воздействию соли, и менее агрессивных компонентов этих солей

    В итоге было разработано решение, получившее название «электролитическое заземление» (электролит — раствор солей).

    Электрод такого типа представляет собой трубу небольшой длины (обычно 2-3 метра) из нержавеющей стали, имеющей почти по всей длине перфорацию. Внутри этой трубы находятся гранулы (не порошок) смеси солей.
    Кроме привычного NaCl в смеси присутствуют еще 3 компонента. Состав якобы является секретом производителей, но мы то знаем, как это бывает 🙂
    Промышленно выпускается два вида труб. В вертикальном исполнении и горизонтальном (в виде повёрнутой буквы “Г” — вот так “I___”.
    Такой электрод помещается в грунт: вертикального исполнения — в заранее сделанную скважину необходимой глубины (2,5 — 3,5 метра); горизонтального исполнения — в заранее выкопанную канаву глубиной 0,7 метра длиной 2,5 метра.

    Влага из грунта впитывается солями в электроде и выходит в виде раствора (электролита) в этот же грунт, пропитывая его и вызывая уменьшение его удельного электрического сопротивления.
    Из-за чего, уменьшается сопротивление заземления электрода (трубы), размещенной в этом грунте.

    Т.к. смесь солей находится в гранулах и в её составе присутствует специальная добавка, она не растворяется всем объемом в весеннее время, когда грунт пропитан водой. Таким образом достигается длительный и равномерный выход электролита из электрода, постепенно увеличивающий (а не просто сохраняющий) концентрацию ионов в окружающем грунте. Обычно заводской “заправки” электрода хватает на 15 лет, после чего возможна неоднократная “дозаправка”.

    Применение в качестве материала трубы из нержавеющей стали и использование менее агрессивной, чем NaCl смеси солей, обеспечивают срок службы “оболочки” такого электрода не менее 50 лет.

    Д2.1. Особенности решения
    Д2.1.1. Простота применения в вечномёрзлых или каменистых грунтах

    Конструкция электрода электролитического заземления позволяет использовать его в “проблемных” грунтах.
    Вечномёрзлые грунты постоянно (круглогодично в течении сотен лет) находятся в замерзшем состоянии. Встречаются на Севере нашей страны. Глубина промерзания такого грунта достигает 2-х километров (в районе Якутска). Начинается вечная мерзлота с 1-2 метров от уровня земли, т.е. с той глубины, которую не может прогреть солнце в летний период.
    Вечномёрзлый грунт очень сложен для строительства заземлителей: он имеет очень высокое электрическое сопротивление (в 100-300 раз больше суглинка) и обладает свойством “выталкивать” из себя металлические электроды из-за эффекта расширения воды при замерзании. Это происходит после летнего оттаивания грунта (перехода грунтовой влаги в жидкое состояние) под этими электродами.

    Каменистый грунт, содержащий большое количество камней размером от кулака до метровых валунов, не менее сложен для строительства заземлителей тем, что в него трудно погрузить электроды обычным способом — мешают камни. Для установки электрода такого типа в горизонтальном исполнении необходима только канава небольшой глубины (0,7 метра), которую сравнительно легко вырыть в обоих типах грунта. Размещение электрода в верхнем слое грунта над вечной мерзлотой избавляет от эффекта “выталкивания”.

    Небольшое заглубление электрода делает возможным и ограниченное применение его в скальниках — если над каменным монолитом есть хотя бы метровый слой рассыпчатого (для “пропитывания” электролитом) грунта.

    Д2.1.2. Компактность

    Электрод электролитического заземления до 12 раз эффективнее обычного стального электрода такого же размера. Это значит в 12 раз уменьшается необходимое количество элементов заземлителя, а значит значительно уменьшается площадь, занимаемая ими.
    При этом, очень ослабевает зависимость сопротивления заземления от сезона из-за уменьшения температуры замерзания воды при увеличении в ней концентрации солей до -5 градусов (температура обычного грунта под снежной шапкой). Это убирает необходимость использования дополнительных заземляющих электродов для компенсации роста сопротивления зимой.

    Д2.1.3. Образование талика

    У свойства электрода уменьшать температуру замерзания грунта есть и негативный момент. Около электрода образуется зона талика (wiki), могущая представлять опасность для фундамента рядом стоящего здания или дорожного покрытия. Зона талика на поверхности грунта представляет собой овал размером около 3х6 метров. Поэтому в ходе проектных работ необходимо учесть это и отдалить электроды от объектов, могущих быть повреждёнными.

    Д2.1.4. Никакой сварки

    Для присоединения к смонтированному электроду заземляющего проводника используется специальный болтовой зажим из латуни или нержавеющей стали.

    Д2.2. Расчёт получаемого сопротивления заземления

    Приведу пример расчёта сопротивления заземления электрода горизонтального исполнения, т.к. это наиболее распространённый на практике вариант, имеющего длину горизонтальной части 2,4 метра и её диаметр 65 мм. Грунт, как обычно, будет однородным суглинком с удельным электрическим сопротивлением 100 Ом*м.

    Сопротивление заземления одиночного горизонтального заземляющего электрода вычисляется по формуле:

    В случае электрода электролитического заземления к формуле добавляется коэффициент, описывающий концентрацию электролита в грунте около этого электрода:

    Коэффициент варьируется от 0,5 до 0,05. Постепенно он уменьшается, т.к. электролит проникает в грунт на бОльший объем, при это повышая свою концентрацию. В обычном грунте он составляет 0,125 через 1-2 месяца выщелачивания солей. Процесс можно ускорить добавлением воды в электрод на заключительной стадии монтажа.

    R1 составит 4,14 Ом (при С = 0,125, р = 100 Ом*м, L = 2.4 м, d = 0.065 м (65 мм), T = 0.6 м (Т — расстояние от верхнего уровня грунта до середины заглублённого электрода)).

    Отличный результат для одиночного заземлителя размером всего в 2,4 метра!
    Но, как всегда, расплата за результат в цене такого электрода… О чём ниже в п. Д2.4. (недостатки).

    Д2.3. Монтаж

    Монтаж электрода электролитического заземления горизонтального исполнения самый простой из всех встреченных мной способов. По сути это банальное закапывание электрода на небольшую глубину.
    Роется канава глубиной 0,7 метра и длиной 2,5 метра. На дно опускается электрод. Используя болтовой зажим, подключается заземляющий проводник. Канава закапывается.
    Дополнительно можно залить в горловину электрода литров 5 воды для ускорения процесса выщелачивания.

    Д2.4. Достоинства и недостатки

    Достоинства:

    • простота и лёгкость монтажа
    • очень высокая эффективность заземлителя, обеспечивающая низкое сопротивление заземления
    • компактность, позволяющая монтировать заземлитель на небольшой площадке.
      Однако, с учётом негативной особенности, описанной в п. Д2.1.3.
    • большой срок службы заземляющего электрода (не менее 50 лет) при его “дозаправке” смесью солей.
      Решение изначально создавалось с таким свойством.
    • очень слабая сезонная зависимость качества заземления
    • не нужна сварка. Элементы конструкции надежно сопрягаются без неё.

    Недостатки:

    • высокая цена электрода (40-60 тысяч рублей за электрод), которая ограничивает широкое использование.
      Рекомендуется применение электролитического заземления в вечномёрзлых или каменистых грунтах, в которых обычные способы строительства не позволяют добиться необходимого результата или ещё дороже.
    • необходимость отдаления от фундаментов зданий и дорог

    На этом всё. Спасибо за внимание! Извините за большой объём информации.

    Вопросы можно задать в комментариях или напрямую по моим координатам, указанным в профиле. Я всегда рад помочь в меру своих возможностей и знаний всем интересующимся.
    Не стесняйтесь 🙂 Помните: нет глупых вопросов — есть глупые ответы.

    PS Мои знания в области защитных устройств и электросетей весьма скудны и поверхностны. Пожалуйста, имейте это в виду.

    Похожие статьи:

    • Шрифт электрические схемы Чертежные шрифты по ГОСТ в программе sPlan 7 Продолжаем все глубже изучать программу черчения электрических схем sPlan 7 и для тех, кому нравиться работать с этой программой я подготовил еще одну статью, подкрепил ее видеоуроком и […]
    • Микропроцессорное реле тока Реле максимального тока статические РСТ 11М Реле предназначены для применения в схемах релейной защиты и автоматики энергетических систем в качестве органа, реагирующего на повышение тока, и используются в комплектных устройствах, от […]
    • Электропроводка автобуса паз Схема электрооборудования ПАЗ 3205 Простой способ заточить сверло Завязать трос в петлю. Разорвем для проверки прочности. Токарные станки. Цены. Подобрать станок по России Подобрать станок по Украине Подарки для настоящих мужчин […]
    • Электрические схемы сандеро Электросхемы ВА GR NO SA CY Прозрачный или белый BE JA OR VE BJ МА RG VI КАК ЧИТАТЬ ПРИНЦИПИАЛЬНУЮ СХЕМУ 1 - Модельный ряд , 2- Критерии выбора схемы, 3 - Текущий модельный год, 4 - Цвет разъема, 5 - Схема разъема, 6 - Схема […]
    • Сечение провода 4 квадрата Какую нагрузку выдержат алюминиевые провода сечением 1, 1/5, 2, 2/5 квадрата, что можно подключить? Если можно простыми словами, лампочки телевизор, какой потянет калорифер, какой сварку, холодильник и тд. Таблица нагрузочной способности […]
    • Схема электропроводка 2111 Схема электропроводка 2111 В данном бесплатном сборнике находится вся необходимая документация по электрооборудованию автомобиля ВАЗ-2111 - сама схема, система подогрева, очиститель фар, электронный модуль управления двигателем и блок […]