Заземление трансформатора схема

Оглавление:

Режимы работы нейтралей трансформаторов системы электроснабжения

Трансформаторы имеют нейтрали, режим работы или способ рабочего заземления которых обусловлен:

  • требованиями техники безопасности и охраны труда персонала,
  • допустимыми токами замыкания на землю,
  • перенапряжениями, возникающими при замыканиях на землю, а также рабочим напряжением неповрежденных фаз электроустановки по отношению к земле, определяющих уровень изоляции электротехнических устройств,
  • необходимостью обеспечения надежной работы релейной защиты от замыкания на землю,
  • возможностью применения простейших схем электрических сетей.

При однофазном замыкании на землю нарушается симметрия электрической системы: изменяются напряжения фаз относительно земли, появляются токи замыкания на землю, возникают перенапряжения в сетях. Степень изменения симметрии зависит от режима нейтрали .

Режим нейтрали оказывает существенное влияние на режимы работы электроприемников, схемные решения системы электроснабжения, параметры выбираемого оборудования.

Нейтраль сети — это совокупность соединенных между собой нейтральных точек и проводников, которая может быть изолирована от сети либо соединена с землей через малые или большие сопротивления.

Используются следующие режимы нейтрали:

эффективно заземленная нейтраль.

Выбор режима нейтрали в электрических сетях определяется бесперебойностью электроснабжения потребителей, надёжностью работы, безопасностью обслуживающего персонала и экономичностью электроустановок.

Нейтрали трансформаторов трёхфазных электрических установок, к обмоткам которых подключены электрические сети, могут быть заземлены непосредственно, либо через индуктивные или активные сопротивления, либо изолированы от земли.

Если нейтраль обмотки трансформатора присоединена к заземляющему устройству непосредственно или через малое сопротивление, то такая нейтраль называется глухозаземлённой , а сети, подсоединённые к ней, соответственно, — сетями с глухозаземлённой нейтралью .

Нейтраль, не соединённая с заземляющим устройством называется изолированной нейтралью .

Сети, нейтраль которых соединена с заземляющим устройством через реактор (индуктивное сопротивление), компенсирующий ёмкостной ток сети, называются сетями с резонанснозаземлённой либо компенсированной нейтралью .

Сети, нейтраль которых заземлена через резистор (активное сопротивление) называется сеть с резистивнозаземлённой нейтралью .

Электрическая сеть, напряжением выше 1 кВ, в которой коэффициент замыкания на землю не превышает 1,4 (коэффициент замыкания на землю – отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания ) называется сеть с эффективнозаземлённой нейтралью .

Электроустановки в зависимости от мер электробезопасности разделяются на 4 группы:

  • электроустановки напряжением выше 1 кВ в сетях с эффективнозаземленной нейтралью (с большими токами замыкания на землю),
  • электроустановки напряжением выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю),
  • электроустановки напряжением до 1 кВ с глухозаземленной нейтралью,
  • электроустановки напряжением до 1 кВ с изолированной нейтралью.

Режимы нейтрали трехфазных систем

Системы с глухозаземленной нейтралью — это системы с большим током короткого замыкания на землю. При коротком замыкании место замыкания отключается автоматически. В системах 0,23 кВ и 0,4 кВ это отключение диктуется требованиями техники безопасности. Одновременно заземляются все корпуса оборудования.

Системы 110 и 220 кВ и выше выполняются с эффективно заземленной нейтралью . При коротком замыкании место замыкания также отключается автоматически. Здесь заземление нейтрали приводит к снижению расчетного напряжения изоляции. Оно равно фазному напряжению неповрежденных фаз относительно земли. Для ограничения величины токов короткого замыкания на землю заземляются не все нейтрали трансформаторов (эффективное заземление).

Режимы нейтрали трехфазных систем: а — заземленная нейтраль, б — изолированная нейтраль

Изолированной нейтралью называется нейтраль, не присоединенная к заземляющему устройству или присоединенная через аппараты, компенсирующие емкостный ток в сети, трансформаторы напряжения и другие аппараты, имеющие большое сопротивление.

Система с изолированной нейтралью применяется для повышения надежности электроснабжения. Характеризуется тем, что при замыкании одной фазы на землю возрастает напряжение фазных проводов относительно земли до линейного напряжения, и симметрия напряжений нарушается. Между линией и нейтралью протекает емкостной ток. Если он меньше 5А, то допускается продолжение работы до 2 ч для турбогенераторов мощностью до 150 МВт и для гидрогенераторов — до 50 МВт. Если установлено, что замыкание произошло не в обмотке генератора, а в сети, то допускается работа в течение 6 ч.

Сети от 1 до 10 кВ — это сети генераторного напряжения электрических станций и местные распределительные сети. При замыкании на землю одной фазы в такой системе напряжение неповрежденных фаз относительно земли возрастает до величины линейного напряжения. Поэтому изоляция должна быть рассчитана на это напряжение.

Основное преимущество режима изолированной нейтрали — способность подавать энергию электроприемникам и потребителям при однофазном замыкании на землю.

Недостатком этого режима являются трудности о обнаружении места замыкания на землю.

Повышенная надежность режима (т.е. возможность нормальной работы при однофазных замыканиях на землю, которые составляют значительную часть повреждений электрооборудования) изолированной нейтрали обуславливает обязательное его применение при напряжении выше 1 кВ до 35 кВ включительно, поскольку эти сети питают большие группы электроприемников и потребителей.

С напряжения 110 кВ и выше применение режима изолированной нейтрали становится экономически невыгодным, так как повышение напряжения относительно земли с фазного до линейного требует существенного усиления фазной изоляции. Применение режима изолированной нейтрали до 1 кВ допускается и оправданно при повышенных требованиях к электробезопасности.

Заземление фазы

Подписка на рассылку

Оказывается, заземлять можно не только нуль, но и фазу. Правда, заземление фазы применяется очень ограниченно. Единственной распространенной сферой применения данной схемы является заземление вторичной обмотки трансформатора напряжения.

Заземление фазы вторичной обмотки трансформатора требуется для обеспечения безопасности его эксплуатации. Когда первичная обмотка начинает пробивать на вторичную, происходит короткое замыкание на землю. В результате замыкания отключается автомат первичной обмотки.

Рисунок 1. Типовая схема заземления фазы вторичной обмотки трансформатора

Стоит отметить, что заземляется всегда только фаза «В» вторичной обмотки трансформатора напряжения. Можно сказать, что так сложилось исторически, еще со времени эксплуатации трансформаторов типа НОМ-6. Ранее однофазные ТН (трансформаторы напряжения) данного типа использовались только для фаз «А» и «С» по схеме «неполная звезда» для большей экономии. Заземление фазы осуществлялось в средней точке неполной звезды, которой является отсутствующая фаза «В».

Разработанные еще в пятидесятых годах прошлого века типовые схемы заземления трансформаторов используются по сей день, из-за чего и получилось, что заземляется всегда только фаза «В».

Задача и особенности заземления трансформаторов.

Для начала нужно разобраться что такое заземление и для чего оно необходимо. Заземление — это преднамеренное соединение корпуса или другой части электроустановки с заземляющим контуром. Сопротивление этого контура, должно быть, не выше 4 Ом. Заземление может быть:

  1. Защитным. Если оно предназначено непосредственно для защиты людей от поражения электрическим током.
  2. Рабочим. Этот вид заземления определённой точки токоведущей части для обеспечения нормальной работы электроустановки.

Питание электроустановки переменного тока могут получать от трансформаторов или же генераторов. В любом случае для защиты человека любой корпус электрооборудования, выполненный из токопроводящего материала должен быть надёжно заземлён. Сети снабжения, а значит и трансформаторы, используемые и в быту, и на производстве, делятся на:

С изолированной нейтралью

Они чаще всего применяются в шахтах и в различных влажных помещениях, в любом случае даже при таком электроснабжении все корпуса, проводящие ток должны быть заземлены. Но также такие системы питания оборудуются специальными устройствами, контролирующими ток утечки. Если сопротивление изоляции при этом будет ниже определённого установленного значения, например, 10 000 Ом, то реле утечки автоматически должно отключить питающее устройство в данном случае трансформатор. Нельзя подключить какой-либо электроприбор или устройство к фазе и заземляющему контуру, немедленно произойдёт отключение. Также аварийное отключение произойдёт при попадании человека под опасное напряжение и прикасание его к земле, так как сопротивление человека от 1000 до 5000 Ом, в зависимости от влажности, и от кожного покрова;

С глухозаземлённой нейтралью

Этот вид снабжения очень распространён в быту для питания любых бытовых помещений и зданий. Основной особенностью его в работы является использование фазного напряжения. То есть в сетях 0,4 кВ или же, другими словами, 380 В, можно применять и запитывать электрические устройства от напряжения между фазой и нулём, оно будет равно 220 В. Именно это напряжения чаще всего применяется в квартирах, офисах, медучреждениях да и для обычного человека незнакомого с подробностями электроснабжения оно является самым популярным.Глухозаземленная нейтраль трансформатора — это специальное преднамеренное соединение нейтрали трансформатора или генератора к заземляющему устройству или же контуру. Здесь и появляется такой термин, как зануление. Трёхфазный трансформатор при соединении обмоток звездой имеет общую точку, которая и называется нейтралью и именно её соединяют с заземляющим контуром с помощью заземлителя. Заземлитель, в свою очередь, это обычный проводник электрического тока, а также группа металлических токопроводящих элементов соединенных между собой и надёжно соприкасающихся с землёй. На практике это металлические прутья, которые вбиваются в три точки в землю и соединяются между собой в треугольник, образуя собой контур. Корпуса трансформаторов заземляются путём соединения болта на корпусе (кожухе) к заземляющему устройству. Нулевая точка или нейтраль выводится отдельной шпилькой и подписывается буквой «N».

Главное, что должен знать каждый, это то что запрещается, в соответствии с правилами устройства электроустановок (ПУЭ), совмещение нулевого защитного и нулевого рабочего проводников в электрических однофазных сетях с глухозаземлённой нейтралью.

Смотрите так же:  Как померить сечения провода

Заземление трансформаторов тока

Трансформатор тока — это особый вид устройств состоящих из магнитопровода и работающих по принципу электромагнитной индукции предназначенный для измерительных и защитных цепей. Как и обычный понижающий трансформатор, он состоит из первичной и вторичной обмотки. Именно вторичную обмотку, которая изолирована от первичной и заземляют, для защиты от пробоя и появления в цепях измерения высокого опасного для человека, и для аппаратуры напряжения. Так как зачастую первичной обмоткой трансформатора тока служит шина или токоведущая часть электроустановки, которая может находиться под очень большим порядка несколько тысяч вольт напряжением.

Заземляющие выводы трансформаторов тока обозначаются и выводятся отдельно на корпус устройства. Заземление группы трансформаторов тока можно выполнить к одной заземляющей шине. Однако в этом случае, это стоит делать через предохранитель, рассчитанный на напряжение пробоя до 1 кВ, а также шунтирующим сопротивлением порядка 100 Ом, которое будет выполнять функцию утечки статического электрического заряда. В итоге хотелось бы отметить что заземление вторичной обмотки трансформаторов тока является не сложной процедурой но весьма эффективной, для обеспечения безопасной работы людей с измерительными приборами и для сохранения всей электрической измерительной аппаратуры, подключенной к нему.

Заземления трансформаторов освещения 36 Вольт

Правила устройства электроустановок для повышения безопасности людей требуют заземлять не только корпус трансформатора, но ещё и его вторичную обмотку. Тогда в случае пробоя первичной обмотки, где протекает 220 или 380 Вольт, в цепях освещения не появится это смертельно опасное напряжение.

В любом случае человеческая жизнь является приоритетной в любой работе, поэтому перед прикосновением к металлическому корпусу любого электрического аппарата, устройства, шкафа, щита и т. д. стоит убедиться визуально в существовании заземления и его целостности.

Зачем и как делают заземление трансформаторов

От производителей электроэнергии передается ток высокого напряжения. Чтобы им могли пользоваться потребители на бытовом уровне, применяют понижающие трансформаторы. Согласно ПУЭ для них необходимо применять защитное заземление. Предусмотрен внешний и внутренний контур заземления. Устанавливают также защиту от ударов молнии.

Принципы устройства

Трансформатор преобразует (трансформирует) параметры переменного электрического тока. Происходит это благодаря явлению электромагнитной индукции. Основные детали прибора – катушки (обмотки) с проводами и ферромагнитный сердечник. На одну катушку ток поступает, и она называется первичной. Вторичных катушек может быть 1, 2 и больше. С них снимается ток с уже измененными характеристиками.

У повышающего трансформатора число витков на вторичной обмотке больше, чем на первичной. В прямой связи увеличивается индуцированное напряжение с одновременным понижением силы тока.

Устройство понижающих трансформаторов другое. Они сделаны с точностью наоборот. Число витков в первичной обмотке у них больше, чем на вторичной обмотке, поэтому индуцированное напряжение снижается. На большие расстояния выгоднее передавать электричество высокого напряжения и низкой силы тока, поскольку потери энергии на выделения тепла наименьшие. Так и поступают. А трансформаторы впоследствии преобразуют ток до необходимых параметров.

Способ соединения обмоток трансформатора может быть выбран «треугольник», «звезда» или «зигзаг». В случае «треугольника» обмотки соединены последовательно, образуя замкнутый контур. Способ «звезда» предполагает соединение концов фазных обмоток в одну точку. Ее называют нулевой (нейтральной) точкой. В случае «зигзага» каждая фазная обмотка состоит из 2-х частей на разных стержнях. Соединение 2-х частей происходит навстречу друг другу. Образовавшиеся три вывода соединяют, как «звезду».

Для трансформаторов высокого напряжения применяют соединение «звезда». Заземляется нулевая точка или конец вторичной обмотки. При объединении в «звезду» заземляют фазный провод.

Применение

Для преобразования тока, который передается по электрическим сетям, применяют силовые трансформаторы. Такие устройства способны работать с большими мощностями. Они преобразуют напряжение на линиях с 35…750 кВ в напряжение 6 и 10 кВ и далее в 400 В. После этого электроэнергией могут пользоваться потребители на бытовом уровне.

Трансформаторы тока используют, чтобы снижать ток до требуемой величины. Их применяют в схемах бесконтактного управления, чтобы обезопасить людей и технику от поражения током. Трансформаторы тока применяют также в измерительных и защитных устройствах, схемах сигнализации и в других приборах.

Особенность трансформатора тока в том, что его вторичная обмотка работает в режиме, близком к короткому замыканию. Если по какой-то причине происходит разрыв цепи на вторичной обмотке, то напряжение на ней повышается до значительных величин. Скачек напряжения может вызвать поломку оборудования, включенного в сеть. Поэтому должно присутствовать защитное заземление.

Существуют также трансформаторы напряжения, импульсные трансформаторы, автотрансформаторы, сварочные и другие. Для каждого из них существуют своя схема и особенности подключения заземления. Чтобы правильно его выполнить, необходимо изучить техническую документацию к оборудованию.

Зачем заземлять

Заземление нейтрали трансформатора необходимо для создания стабильной работы электроустановки и безопасности людей, которые могут находиться на подстанции. Рабочее заземление на трансформаторе является частью защитного. Это значит, что заземление, предназначенное для стабильной работы устройства, также защищает от поражения током.

Правила устройства электроустановок требуют, чтобы все силовые трансформаторы были заземлены.

В трансформаторах напряжения заземляется только трансформатор. Согласно правилам устройства электроустановок у трансформатора напряжения заземление вторичной обмотки происходит путем соединения общей точки или одного из концов обмотки с заземляющим проводником.

В трансформаторах тока заземляются вторичные обмотки. Для подключения проводников предусмотрены специальные зажимы. Обмотки нескольких установок можно соединять одним проводником и подключать к одной шине.

В электротехнике выделяют понятие сети с эффективно заземленной нейтралью. Оно применимо для силового трансформатора, у которого заземлено большинство нейтралей обмоток (глухое заземление нейтрали). Если произойдет однофазное замыкание, то напряжение на поврежденных фазах не должно быть выше 1,4 напряжения на рабочих фазах в нормальных условиях.

Дугогасящие реакторы

В сетях, рассчитанных на 110 кВ и выше, предусмотрена защита с глухозаземленной нейтралью. Если сеть рассчитана на 35 кВ и ниже, то применяется заземление с изолированной нейтралью.

Преимущество изолированной нейтрали в том, что если произойдет замыкание фазы на земли, то это не приведет к короткому замыканию. На трансформаторах с системой изолированной нейтрали устанавливают дугогасящие реакторы. Они компенсируют емкостные токи, возникающие при замыкании на землю.

Дело в том, что вдоль линии электропередачи накапливается электрический заряд (емкостное электричество). И как только происходит разрыв или иное повреждение изоляции, при контакте с землей возникает ток. Если он достигает 30 А, образуется разрядная дуга. В результате кабель нагревается, начинает разрушаться изоляция и вместе с ней проводник.

Такое явление приводит к двухфазному и трехфазному замыканию. Срабатывает защита, и трансформатор полностью отключается. Обесточенными остаются сотни и тысячи потребителей электроэнергии.

Чтобы этого не произошло, устанавливают дугогасящие реакторы. Нейтраль заземляют через них. Во время однофазного замыкания на землю возрастает индуктивность дугогасящего реактора. Индуктивная проводимость компенсирует емкостную, и электрическая дуга не возникает.

Через дугогасящие реакторы заземляют нейтраль первичной обмотки одного из трансформаторов сети, в которой соединение обмоток происходит по типу «звезда-треугольник».

Если произошло замыкание на землю, то благодаря такой системе заземления, трансформатор сможет работать на протяжении еще 2-х часов, пока неполадки не будут устранены.

Создание внешнего контура

Чтобы сделать внешний контур заземления трансформатора, применяют вертикальные электроды, соединенные горизонтальными перемычками. Перемычки выполняют из листовой стали толщиной 4 мм и шириной 40 мм. Электроды втыкают в грунт по периметру трансформатора.

Проверяют удельное сопротивление грунта. Оно должно составлять максимум 100 Ом*м. Исходя из этого, требуется создать контур сопротивлением максимум 4 Ом.

Если взять круг диаметром 16 м, с условным трансформатором посередине, то для создания заземляющего контура потребуется минимум восемь электродов длиной по 5 м каждый. Их размещают на расстоянии приблизительно 1 м от фундамента трансформаторной станции. Чем ближе стержни будут располагаться к стене, тем лучше. Горизонтальные полоски-соединения укладывают на ребро на глубину 0,5-0,7 м.

Такое требование к расположению связано с вопросами безопасности. Заземлитель не должен быть поврежден при проведении каких-либо ремонтных и строительных работ.

Защита от молний

Чтобы выполнить молниезащиты трансформаторной подстанции с металлической крышей, необходимо соединить крышу с внешним контуром заземления.

Соединение происходит в двух противоположных точках. То есть в одной точке кровля соединяется с внешним контуром, и со стороны, расположенной напротив, также происходит соединение кровли с контуром. Соединительным проводником становится проволока толщиной 8 мм.

Если кровля не металлическая, то на ней наверху создают специальный молниеприемник.

Создание внутреннего контура

Трансформаторная подстанция разделена на 3 помещения. Отдельно делают помещения для высокого и низкого напряжения – это помещения распределительных устройств (для входа и выхода). И отдельно предусмотрена трансформаторная камера, непосредственно для трансформатора.

В каждом отделении должна быть проложена заземляющая полоса. Ее прикрепляют к стенам на высоте 0,4…0,6 м, чтобы заземлить все части из металла, не предназначенные для проведения тока. Для крепления применяют дюбеля или специальные держатели круглых и плоских заземляющих проводников.

К заземляющей полосе подключают швеллер, предназначенный для установки трансформатора. Он размещен в стяжке пола. Подсоединяют и другие детали (шинный мост, металлические элементы барьера, крепежные детали, место присоединения переносного заземления). К системе заземления подключают все опорные конструкции из металла и стальные каркасы.

Для разборных соединений применяют болты, в остальных случаях элементы сваривают между собой. Для закрепления переносного заземления используют гайку с ушками «барашек». Перемычки делают из гибкого медного провода ПВ3. Однако изоляционную оболочку с такого провода надо снять, чтобы можно было следить за целостностью жил.

Заделку в стены осуществляют посредством вставки гильз и заполнением свободного пространства негорючим материалом. Полосу окрашивают в желтый цвет с зелеными полосами. Такую окраску имеет защитный нулевой провод. Нулевую шину подключают к заземляющему контуру. Корпус трансформатора соединяют с контуром перемычками. При осмотре трансформатора на вход ставят оградительный барьер и навешивают табличку «Осторожно! Высокое напряжение!».

Глухозаземленная нейтраль: принцип работы, устройство, особенности

В подавляющем большинстве электросетей (до 1 кВ) применяется глухозаземленная нейтраль, поскольку такое исполнение наиболее оптимально для действующих требований электробезопасности. Учитывая распространенность этой схемы заземления нейтрали, имеет смысл подробно ознакомиться с ее устройством, принципом работы и техническими особенностями, а также основными требованиями ПУЭ к электроустановкам до 1 кВ.

Смотрите так же:  Магнитный пускатель 10 а

Что такое глухозаземленная нейтраль?

Начнем с определения нейтрали, в электротехнике под этим термином подразумевается точка в месте соединения всех фазных обмоток трансформаторов и генераторов, когда применяется тип подключения «Звезда». Соответственно, при включении «Треугольником» нейтрали быть не может.

Включение обмоток: а) «звездой»; б) «треугольником»

Если нейтраль обмоток генератора или трансформатора заземлить, то такая система получит название глухозаземленной, с ее организацией можно ознакомиться ниже.

Рис. 2. Сеть с глухозаземленной нейтралью

Устройство сетей с голухозаземленной нейтралью

Как видно из рисунка 2, характерной особенностью электросетей TN типа является заземление нейтрали. Заметим, что в данном случае речь идет не о защитном заземлении, а о рабочем соединении между нейтралью и заземляющим контуром. Согласно действующим нормам, максимальное сопротивление такого соединения – 4-е Ома (для сетей 0,4 кВ). При этом нулевой провод, идущий от глухозаземленной средней точки, должен сохранять свою целостность, то есть, не коммутироваться и не оборудоваться защитными устройствами, например, предохранителями или автоматическими выключателями.

В ВЛ до 1-го кВ, используемых в системах с глухозаземленной нейтралью, нулевые провода прокладываются на опорах, как и фазные. В местах, где делается отвод от ЛЭП, а также через каждые 200,0 метров магистрали, положено повторно заземлять нулевые линии.

Пример устройства сети TN-C-S

Если от трансформаторных подстанций отводятся кабели к потребителю, то при использовании схемы с глухозаземленной нейтралью, длина такой магистрали не может превышать 200,0 метров. На вводных РУ также следует подключать шину РЕ к контуру заземления, что касается нулевого провода, то необходимость в его подключении к «земле» зависит от схемы исполнения.

Технические особенности

В данной системе, где используется общая средняя точка, помимо межфазного присутствует и фазное напряжение. Последнее образуется между рабочим нулем и линейными проводами. Наглядно отличие первого от второго продемонстрировано ниже.

Разница между фазным и линейным напряжением

Разность потенциалов UF1, UF2 и UF3 принято называть фазными, а величины UL1, UL2 и UL3 – линейными или межфазными. Характерно, что UL превышает UF примерно в 1,72 раза.

В идеально сбалансированной сети трехфазного электрического тока должны выполняться поддерживаться следующие соотношения:

На практике добиться такого результата невозможно по ряду причин, например из-за неравномерной нагрузки, токов утечки, плохой изоляции фазных проводников и т.д. Когда нейтраль заземлена, дисбаланс линейных и фазных характеристик энергосистемы существенно снижается, то есть, рабочий ноль позволяет выравнивать потенциалы.

Обрыв нулевого провода считается серьезной аварией, которая с большой вероятностью приведет к нарушению симметрии нагрузки, более известной под термином «перекос фаз». В таких случаях в сетях однофазных потребителей произойдет резкое увеличение амплитуды электрического тока, что с большой вероятностью выведет из строя оборудование, рассчитанное на напряжение 220 В. Получить более подробную информацию о перекосе фаз и способах защиты от него, можно на страницах нашего сайта.

Принцип действия сетей с глухозаземленной нейтралью

Теперь рассмотрим подробно, с какой целью заземляется нейтраль и как подобная реализация обеспечивает должный уровень электробезопасности, для этого перечислим обстоятельства, которые могут привести к поражению электротоком:

  • Непосредственное прикосновение к токоведущим элементам. В данном случае никакое заземление не поможет. Необходимо ограничивать доступ к таким участкам и быть внимательным при приближении к ним.
  • Образование зон с шаговым напряжением в результате аварий на ВЛ или других видах электрохозяйства.
  • Повреждения внутренней изоляции может привести к «пробою» на корпус электроустановки, то есть, на нем появляется опасное для жизни напряжение.
  • В результате нарушения электроизоляции токоведущих линий под напряжением могут оказаться кабельные каналы, короба и другие металлические конструкции, используемые при трассировке.

В идеале между нейтралью и землей разность потенциалов должна стремиться к нулю. Подключение к заземляющему контуру на вводе потребителя существенно способствует выполнению этого условия, в тех случаях, когда ТП находится на значительном удалении. При правильной организации заземления такая особенность может спасти человеческую жизнь, как минимум, в двух последних случаях из указанного выше списка.

Чтобы избежать пагубного воздействия электротока необходимо заземлять корпуса электроприборов, а также и других металлических частей электроустановок зданий. Это приведет к тому, что при «пробое» возникнет замыкание фазы на землю. В результате произойдет автоматическое отключение снабжения питанием электроприемников, вызванное срабатыванием устройства защиты от токов КЗ.

Даже если защита не сработает, а кто-либо прикоснется к металлическому элементу, все равно ток будет течь по заземляющему проводнику, поскольку в этой цепи будет меньшее сопротивление.

Движение тока при КЗ на корпус

Говоря о принципе работы защиты заземленной нейтрали нельзя не отметить быстрый выход в аварийный режим, когда один из фазных проводов замыкается на шину PEN. По сути, это КЗ на нейтраль, следствием которого является резкое возрастание тока, приводящее к защитному отключению энергоустановки или проблемного участка цепи.

При определенных условиях можно даже организовать защиту от образования опасных зон с шаговым напряжением. Для этого на пол в потенциально опасном помещении стелют (если необходимо, то замуровывают в бетон) металлическую сеть, подключенную к общему заземляющему контуру.

Отличия глухозаземленной нейтрали от изолированной

Чтобы дать объяснить различие необходимо, кратко рассказать об основных особенностях изолированной нейтрали, пример такого исполнения приведен ниже.

Рис. 6. Электроустановка с изолированной нейтралью

Как видно из рисунка при данном способе нейтраль изолирована от контура заземления (в случае соединения обмоток «треугольником» она вообще отсутствует), поэтому открытые проводящие части (далее по тексту ОПЧ) электроустановок заземляются независимо от сети. Основное преимущество такой системы заключается в том, что при первом однофазном замыкании можно не производить защитное отключение. Это несомненный плюс для высоковольтных линий, поскольку обеспечивается более высокая надежность электроснабжения. К сожалению, такой режим заземления не удовлетворяет требования электробезопасности для сетей конечных потребителей.

Низкий уровень электробезопасности основной, но не единственный недостаток изолированной нейтрали, с их полным списком, а также другими особенностями этой схемы электроснабжения, можно ознакомиться на нашем сайте.

Системы TN и её подсистемы

Начнем с аббревиатуры. Первые две буквы характеризуют вариант исполнения заземления для нейтрали и ОПЧ соответственно. Варианты для первой литеры:

  • T (от англ. terra – земля) – обозначает глухозаземленную нейтраль.
  • I (от англ. isolate – изолировать) – указывает, что соединение с «землей» отсутствует.

Варианты вторых литер говорят об исполнении заземления ОПЧ: N или Т, используется глухозаземленная нейтраль или независимый контур, соответственно.

Сейчас практикуется три схемы нейтрали:

  1. Эффективное заземление обозначается, как ТТ. Особенность такой схемы заключается в том, что глухозаземленный вывод (N)считается рабочим проводом, а для защиты используется собственный заземляющий проводник (РЕ). Схема заземления ТТ
  2. Изолированная нейтраль (принятое обозначение IT), схема системы была представлена выше на рис. 6.
  3. Вариант TN (глухозаземленное исполнение).

У последнего варианта исполнения есть три подвида:

  • Совмещенный вариант, принятое обозначение TN-С. У данного подвида защитный нуль соединен с нейтральным проводом, что не обеспечивает должного уровня электробезопасности. При обрыве РЕ+N защитное зануление становится бесполезным. Это основная причина, по которой от системы TN-C постепенно отказываются. Схема заземления TN-С
  • Вариант TN-S, нулевой и защитный проводники проложены раздельно. Такая схема наиболее безопасна, но для нее требуется использовать не 4-х, а 5-ти жильный кабель, что повышает стоимость реализации. Схема заземления TN-S
  • Подсистема, совмещающая в себе два предыдущих варианта – TN-C-S. От подстанции до ввода потребителя идет один провод, в РУ он подключается к шинам PE, N и заземляющему контуру. Такая подсистема заземленной нейтрали сейчас наиболее распространена. Схема заземления TN-C-S

Требования ПУЭ

В Правилах нормам и требованиям к глухозаземленной посвящена глава 1.7, приведем наиболее значимые выдержки из нее:

  • Для подключения нейтрали к контуру заземления необходимо использовать специальный проводник.
  • При выборе места под заземляющее устройство следует исходить из минимально допустимого расстояния между ним и нейтралью.
  • Если в качестве заземления используется жб конструкция фундамента, то к его армирующему основанию следует подключаться не менее чем в 2-х точках, это гарантирует наиболее эффективную защиту.
  • Сопротивление заземляющего проводника для трехфазной цепи электрической сети 0,4 кВ имеет ограничение 4-е Ома. В исключительных случаях эта норма может быть пересмотрена исходя из характеристик грунта.
  • В линии глухозаземленной нейтрали запрещено устанавливать предохранители, защитные устройства и другие элементы, способные нарушить целостность проводника.
  • Правилами предписывается обеспечить заземляющему проводнику надежную защиту от механических повреждений.
  • ВЛ должна быть оборудована дублирующими заземлителями, они устанавливаются в начале и конце линии, на отводах, а также через каждые 200 м.
  • Дублирующее заземление должно выполняться и на вводе потребителя и обязательно указываться в схеме щитка ВРУ.
  • При организации бытовых однофазных сетей от ВРУ должна выполняться разводка тремя проводами, один из которых фаза, второй – ноль (N) и третий – защитный (РЕ).
  • Скорость срабатывания защитных автоматов, установленных в однофазных сетях с глухозаземленной нейтралью, не должна быть продолжительней 0,40 сек.

Глухозаземленная нейтраль: принцип работы, устройство, особенности

В подавляющем большинстве электросетей (до 1 кВ) применяется глухозаземленная нейтраль, поскольку такое исполнение наиболее оптимально для действующих требований электробезопасности. Учитывая распространенность этой схемы заземления нейтрали, имеет смысл подробно ознакомиться с ее устройством, принципом работы и техническими особенностями, а также основными требованиями ПУЭ к электроустановкам до 1 кВ.

Что такое глухозаземленная нейтраль?

Начнем с определения нейтрали, в электротехнике под этим термином подразумевается точка в месте соединения всех фазных обмоток трансформаторов и генераторов, когда применяется тип подключения «Звезда». Соответственно, при включении «Треугольником» нейтрали быть не может.

Включение обмоток: а) «звездой»; б) «треугольником»

Если нейтраль обмоток генератора или трансформатора заземлить, то такая система получит название глухозаземленной, с ее организацией можно ознакомиться ниже.

Смотрите так же:  Провода какой фирмы лучше

Рис. 2. Сеть с глухозаземленной нейтралью

Устройство сетей с голухозаземленной нейтралью

Как видно из рисунка 2, характерной особенностью электросетей TN типа является заземление нейтрали. Заметим, что в данном случае речь идет не о защитном заземлении, а о рабочем соединении между нейтралью и заземляющим контуром. Согласно действующим нормам, максимальное сопротивление такого соединения – 4-е Ома (для сетей 0,4 кВ). При этом нулевой провод, идущий от глухозаземленной средней точки, должен сохранять свою целостность, то есть, не коммутироваться и не оборудоваться защитными устройствами, например, предохранителями или автоматическими выключателями.

В ВЛ до 1-го кВ, используемых в системах с глухозаземленной нейтралью, нулевые провода прокладываются на опорах, как и фазные. В местах, где делается отвод от ЛЭП, а также через каждые 200,0 метров магистрали, положено повторно заземлять нулевые линии.

Пример устройства сети TN-C-S

Если от трансформаторных подстанций отводятся кабели к потребителю, то при использовании схемы с глухозаземленной нейтралью, длина такой магистрали не может превышать 200,0 метров. На вводных РУ также следует подключать шину РЕ к контуру заземления, что касается нулевого провода, то необходимость в его подключении к «земле» зависит от схемы исполнения.

Технические особенности

В данной системе, где используется общая средняя точка, помимо межфазного присутствует и фазное напряжение. Последнее образуется между рабочим нулем и линейными проводами. Наглядно отличие первого от второго продемонстрировано ниже.

Разница между фазным и линейным напряжением

Разность потенциалов UF1, UF2 и UF3 принято называть фазными, а величины UL1, UL2 и UL3 – линейными или межфазными. Характерно, что UL превышает UF примерно в 1,72 раза.

В идеально сбалансированной сети трехфазного электрического тока должны выполняться поддерживаться следующие соотношения:

На практике добиться такого результата невозможно по ряду причин, например из-за неравномерной нагрузки, токов утечки, плохой изоляции фазных проводников и т.д. Когда нейтраль заземлена, дисбаланс линейных и фазных характеристик энергосистемы существенно снижается, то есть, рабочий ноль позволяет выравнивать потенциалы.

Обрыв нулевого провода считается серьезной аварией, которая с большой вероятностью приведет к нарушению симметрии нагрузки, более известной под термином «перекос фаз». В таких случаях в сетях однофазных потребителей произойдет резкое увеличение амплитуды электрического тока, что с большой вероятностью выведет из строя оборудование, рассчитанное на напряжение 220 В. Получить более подробную информацию о перекосе фаз и способах защиты от него, можно на страницах нашего сайта.

Принцип действия сетей с глухозаземленной нейтралью

Теперь рассмотрим подробно, с какой целью заземляется нейтраль и как подобная реализация обеспечивает должный уровень электробезопасности, для этого перечислим обстоятельства, которые могут привести к поражению электротоком:

  • Непосредственное прикосновение к токоведущим элементам. В данном случае никакое заземление не поможет. Необходимо ограничивать доступ к таким участкам и быть внимательным при приближении к ним.
  • Образование зон с шаговым напряжением в результате аварий на ВЛ или других видах электрохозяйства.
  • Повреждения внутренней изоляции может привести к «пробою» на корпус электроустановки, то есть, на нем появляется опасное для жизни напряжение.
  • В результате нарушения электроизоляции токоведущих линий под напряжением могут оказаться кабельные каналы, короба и другие металлические конструкции, используемые при трассировке.

В идеале между нейтралью и землей разность потенциалов должна стремиться к нулю. Подключение к заземляющему контуру на вводе потребителя существенно способствует выполнению этого условия, в тех случаях, когда ТП находится на значительном удалении. При правильной организации заземления такая особенность может спасти человеческую жизнь, как минимум, в двух последних случаях из указанного выше списка.

Чтобы избежать пагубного воздействия электротока необходимо заземлять корпуса электроприборов, а также и других металлических частей электроустановок зданий. Это приведет к тому, что при «пробое» возникнет замыкание фазы на землю. В результате произойдет автоматическое отключение снабжения питанием электроприемников, вызванное срабатыванием устройства защиты от токов КЗ.

Даже если защита не сработает, а кто-либо прикоснется к металлическому элементу, все равно ток будет течь по заземляющему проводнику, поскольку в этой цепи будет меньшее сопротивление.

Движение тока при КЗ на корпус

Говоря о принципе работы защиты заземленной нейтрали нельзя не отметить быстрый выход в аварийный режим, когда один из фазных проводов замыкается на шину PEN. По сути, это КЗ на нейтраль, следствием которого является резкое возрастание тока, приводящее к защитному отключению энергоустановки или проблемного участка цепи.

При определенных условиях можно даже организовать защиту от образования опасных зон с шаговым напряжением. Для этого на пол в потенциально опасном помещении стелют (если необходимо, то замуровывают в бетон) металлическую сеть, подключенную к общему заземляющему контуру.

Отличия глухозаземленной нейтрали от изолированной

Чтобы дать объяснить различие необходимо, кратко рассказать об основных особенностях изолированной нейтрали, пример такого исполнения приведен ниже.

Рис. 6. Электроустановка с изолированной нейтралью

Как видно из рисунка при данном способе нейтраль изолирована от контура заземления (в случае соединения обмоток «треугольником» она вообще отсутствует), поэтому открытые проводящие части (далее по тексту ОПЧ) электроустановок заземляются независимо от сети. Основное преимущество такой системы заключается в том, что при первом однофазном замыкании можно не производить защитное отключение. Это несомненный плюс для высоковольтных линий, поскольку обеспечивается более высокая надежность электроснабжения. К сожалению, такой режим заземления не удовлетворяет требования электробезопасности для сетей конечных потребителей.

Низкий уровень электробезопасности основной, но не единственный недостаток изолированной нейтрали, с их полным списком, а также другими особенностями этой схемы электроснабжения, можно ознакомиться на нашем сайте.

Системы TN и её подсистемы

Начнем с аббревиатуры. Первые две буквы характеризуют вариант исполнения заземления для нейтрали и ОПЧ соответственно. Варианты для первой литеры:

  • T (от англ. terra – земля) – обозначает глухозаземленную нейтраль.
  • I (от англ. isolate – изолировать) – указывает, что соединение с «землей» отсутствует.

Варианты вторых литер говорят об исполнении заземления ОПЧ: N или Т, используется глухозаземленная нейтраль или независимый контур, соответственно.

Сейчас практикуется три схемы нейтрали:

  1. Эффективное заземление обозначается, как ТТ. Особенность такой схемы заключается в том, что глухозаземленный вывод (N)считается рабочим проводом, а для защиты используется собственный заземляющий проводник (РЕ). Схема заземления ТТ
  2. Изолированная нейтраль (принятое обозначение IT), схема системы была представлена выше на рис. 6.
  3. Вариант TN (глухозаземленное исполнение).

У последнего варианта исполнения есть три подвида:

  • Совмещенный вариант, принятое обозначение TN-С. У данного подвида защитный нуль соединен с нейтральным проводом, что не обеспечивает должного уровня электробезопасности. При обрыве РЕ+N защитное зануление становится бесполезным. Это основная причина, по которой от системы TN-C постепенно отказываются. Схема заземления TN-С
  • Вариант TN-S, нулевой и защитный проводники проложены раздельно. Такая схема наиболее безопасна, но для нее требуется использовать не 4-х, а 5-ти жильный кабель, что повышает стоимость реализации. Схема заземления TN-S
  • Подсистема, совмещающая в себе два предыдущих варианта – TN-C-S. От подстанции до ввода потребителя идет один провод, в РУ он подключается к шинам PE, N и заземляющему контуру. Такая подсистема заземленной нейтрали сейчас наиболее распространена. Схема заземления TN-C-S

Требования ПУЭ

В Правилах нормам и требованиям к глухозаземленной посвящена глава 1.7, приведем наиболее значимые выдержки из нее:

  • Для подключения нейтрали к контуру заземления необходимо использовать специальный проводник.
  • При выборе места под заземляющее устройство следует исходить из минимально допустимого расстояния между ним и нейтралью.
  • Если в качестве заземления используется жб конструкция фундамента, то к его армирующему основанию следует подключаться не менее чем в 2-х точках, это гарантирует наиболее эффективную защиту.
  • Сопротивление заземляющего проводника для трехфазной цепи электрической сети 0,4 кВ имеет ограничение 4-е Ома. В исключительных случаях эта норма может быть пересмотрена исходя из характеристик грунта.
  • В линии глухозаземленной нейтрали запрещено устанавливать предохранители, защитные устройства и другие элементы, способные нарушить целостность проводника.
  • Правилами предписывается обеспечить заземляющему проводнику надежную защиту от механических повреждений.
  • ВЛ должна быть оборудована дублирующими заземлителями, они устанавливаются в начале и конце линии, на отводах, а также через каждые 200 м.
  • Дублирующее заземление должно выполняться и на вводе потребителя и обязательно указываться в схеме щитка ВРУ.
  • При организации бытовых однофазных сетей от ВРУ должна выполняться разводка тремя проводами, один из которых фаза, второй – ноль (N) и третий – защитный (РЕ).
  • Скорость срабатывания защитных автоматов, установленных в однофазных сетях с глухозаземленной нейтралью, не должна быть продолжительней 0,40 сек.

Похожие статьи:

  • Можно ли подключить узо без заземления Подключение УЗО без заземления Специальные устройства защитного отключения (УЗО) рекомендуют устанавливать там, где существует высокая вероятность поражения током. Задачей устройства является оперативное отключение всего электрического […]
  • Однофазный двигатель переменного тока с конденсатором Конденсаторный двигатель В ГОСТ 27471-87 [1] дано следующее определение:Конденсаторный двигатель - двигатель с расщепленной фазой, у которого в цепь вспомогательной обмотки постоянно включен конденсатор. Конденсаторный двигатель, хотя и […]
  • Как подсоединить провода к лампочке Как правильно подключить патрон для лампочки к проводам. Такая казалось бы простая и незамысловатая процедура, как подключение патрона для лампочки, имеет свои нюансы, не всегда знакомые для людей далеких от электричества. Да что […]
  • Как считается длина провода Расчет длины кабеля для прокладки электропроводки Перед проведением монтажа проводки вам необходимо провести правильный расчет длины кабеля. Провести правильный расчет можно с помощью двух способов. В первом способе вам потребуется […]
  • Справочник обмотчика асинхронных электродвигателей вл лихачев книга Справочник обмотчика асинхронных электродвигателей - Лихачев В.Л. Справочник обмотчика асинхронных электродвигателей - Лихачев В.Л. [ Технические издания / Электроника, электрика | 16 марта 2017] Название: Справочник […]
  • Как 220 вольт преобразовать в 110 Как преобразовать 110 вольт (60герц) в 220 (50 герц) Всегда на связи Диктор 2 153 сообщений Столкнулся я с такой проблемой, доча заказала на новый год деду морозу железную дорогу, а хорошие железные дороги в России не […]