Заземление в цепях постоянного тока

Заземление и защитные меры

Электробезопасности

Область применения. Термины и определения

1.7.1. Настоящая глава Правил распространяется на все электроустановки переменного и постоянного тока напряжением до 1 кВ и выше и содержит общие требования к их заземлению и защите людей и животных от поражения электрическим током как в нормальном режиме работы электроустановки, так и при повреждении изоляции.

Дополнительные требования приведены в соответствующих главах ПУЭ.

1.7.2. Электроустановки в отношении мер электробезопасности разделяются на:

электроустановки напряжением выше 1 кВ в сетях с глухозаземленной или эффективно заземленной нейтралью (см. 1.2.16);

электроустановки напряжением выше 1 кВ в сетях с изолированной или заземленной через дугогасящий реактор или резистор нейтралью;

электроустановки напряжением до 1 кВ в сетях с глухозаземленной нейтралью;

электроустановки напряжением до 1 кВ в сетях с изолированной нейтралью.

1.7.3. Для электроустановок напряжением до 1 кВ приняты следующие обозначения:

система TN — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников;

Рис. 1.7.1. Система TNC переменного (а) и постоянного (б) тока. Нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике:

1 — заземлитель нейтрали (средней точки) источника питания;

2 — открытые проводящие части; 3 — источник питания постоянного тока

система TN — система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении (рис. 1.7.1);

система TNS — система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении (рис. 1.7.2);

система TNCS — система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания (рис. 1.7.3);

система IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены (рис. 1.7.4);

система ТТ — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника (рис. 1.7.5).

Первая буква — состояние нейтрали источника питания относительно земли:

Т — заземленная нейтраль;

I — изолированная нейтраль.

Рис. 1.7.2. Система TNS переменного (а) и постоянного (б) тока. Нулевой защитный и нулевой рабочий проводники разделены:

1 — заземлитель нейтрали источника переменного тока; 1-1 — заземлитель вывода источника постоянного тока; 1-2 — заземлитель средней точки источника постоянного тока; 2 — открытые проводящие части; 3 — источник питания

Вторая-буква — состояние открытых проводящих частей относительно земли:

Т — открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;

N — открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.

Последующие (после N) буквы — совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:

S — нулевой рабочий (N) и нулевой защитный (РЕ) проводники разделены;

Рис. 1.7.3. Система TNCS переменного (а) и постоянного (б) тока. Нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике в части системы:

1 — заземлитель нейтрали источника переменного тока; 1-1 — заземлитель вывода источника постоянного тока; 1-2 — заземлитель средней точки источника постоянного тока; 2 — открытые проводящие части, 3 — источник питания

С — функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN-проводник);

N-нулевой рабочий (нейтральный) проводник;

РЕ-защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов);

PEN-совмещенный нулевой защитный и нулевой рабочий проводники.

Рис. 1.7.4. Система IT переменного (а) и постоянного (б) тока. Открытые проводящие

части электроустановки заземлены. Нейтраль источника питания изолирована от земли

или заземлена через большое сопротивление:

1 — сопротивление заземления нейтрали источника питания (если имеется); 2 — заземлитель;

3 — открытые проводящие части; 4 — заземляющее устройство электроустановки;

5 — источник питания

1.7.4. Электрическая сеть с эффективно заземленной нейтралью — трехфазная электрическая сеть напряжением выше 1 кВ, в которой коэффициент замыкания на землю не превышает 1,4.

Коэффициент замыкания на землю в трехфазной электрической сети — отношение разности потенциалов между неповрежденной фазой и землей в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землей в этой точке до замыкания.

Рис. 1.7.5. Система ТТ переменного (а) и постоянного (б) тока. Открытые проводящие части электроустановки заземлены при помощи заземления, электрически независимого от заземлителя нейтрали:

1 — заземлитель нейтрали источника переменного тока; 1-1 — заземлитель вывода источника постоянного тока; 1-2 — заземлитель средней точки источника постоянного тока; 2 — открытые проводящие части; 3 — заземлитель открытых проводящих частей электроустановки;

4 — источник питания

1.7.5. Глухозаземленная нейтраль — нейтраль трансформатора или генератора, присоединенная непосредственно к заземляющему устройству. Глухозаземленным может быть также вывод источника однофазного переменного тока или полюс источника постоянного тока в двухпроводных сетях, а также средняя точка в трехпроводных сетях постоянного тока.

1.7.6. Изолированная нейтраль — нейтраль трансформатора или генератора, неприсоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств.

1.7.7. Проводящая часть — часть, которая может проводить электрический ток.

1.7.8. Токоведущая часть — проводящая часть электроустановки, находящаяся в процессе ее работы под рабочим напряжением, в том числе нулевой рабочий проводник (но не PEN-проводник).

1.7.9. Открытая проводящая часть — доступная прикосновению проводящая часть электроустановки, нормально не находящаяся под напряжением, но которая может оказаться под напряжением при повреждении основной изоляции.

1.7.10. Сторонняя проводящая часть — проводящая часть, не являющаяся частью электроустановки.

1.7.11. Прямое прикосновение — электрический контакт людей или животных с токоведущими частями, находящимися под напряжением.

1.7.12. Косвенное прикосновение — электрический контакт людей или животных с открытыми проводящими частями, оказавшимися под напряжением при повреждении изоляции.

1.7.13. Защита от прямого прикосновения — защита для предотвращения прикосновения к токоведущим частям, находящимся под напряжением.

1.7.14. Защита при косвенном прикосновении — защита от поражения электрическим током при прикосновении к открытым проводящим частям, оказавшимся под напряжением при повреждении изоляции.

Термин повреждение изоляции следует понимать как единственное повреждение изоляции.

1.7.15. Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.

1.7.16. Искусственный заземлитель — заземлитель, специально выполняемый для целей заземления.

1.7.17. Естественный заземлитель — сторонняя проводящая часть, находящаяся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду, используемая для целей заземления.

1.7.18. Заземляющий проводник — проводник, соединяющий заземляемую часть (точку) с заземлителем.

1.7.19. Заземляющее устройство — совокупность заземлителя и заземляющих проводников.

1.7.20. Зона нулевого потенциала (относительная земля) — часть земли, находящаяся вне зоны влияния какого-либо заземлителя, электрический потенциал которой принимается равным нулю.

1.7.21. Зона растекания (локальная земля) — зона земли между заземлителем и зоной нулевого потенциала.

Термин земля, используемый в главе, следует понимать как земля в зоне растекания.

1.7.22. Замыкание на землю — случайный электрический контакт между токоведущими частями, находящимися под напряжением, и землей.

1.7.23. Напряжение на заземляющем устройстве — напряжение, возникающее при стекании тока с заземлителя в землю между точкой ввода тока в заземлитель и зоной нулевого потенциала.

1.7.24. Напряжение прикосновения — напряжение между двумя проводящими частями или между проводящей частью и землей при одновременном прикосновении к ним человека или животного.

Ожидаемое напряжение прикосновения — напряжение между одновременно доступными прикосновению проводящими частями, когда человек или животное их не касается.

1.7.25. Напряжение шага — напряжение между двумя точками на поверхности земли, на расстоянии 1 м одна от другой, которое принимается равным длине шага человека.

1.7.26. Сопротивление заземляющего устройства — отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю.

1.7.27. Эквивалентное удельное сопротивление земли с неоднородной структурой — удельное электрическое сопротивление земли с однородной структурой, в которой сопротивление заземляющего устройства имеет то же значение, что и в земле с неоднородной структурой.

Термин удельное сопротивление, используемый в главе для земли с неоднородной структурой, следует понимать как эквивалентное удельное сопротивление.

1.7.28. Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.

1.7.29. Защитное заземление — заземление, выполняемое в целях электробезопасности.

1.7.30. Рабочее (функциональное) заземление — заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности).

1.7.31. Защитное зануление в электроустановках напряжением до 1 кВ — преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.

1.7.32. Уравнивание потенциалов — электрическое соединение проводящих частей для достижения равенства их потенциалов.

Защитное уравнивание потенциалов — уравнивание потенциалов, выполняемое в целях электробезопасности.

Термин уравнивание потенциалов, используемый в главе, следует понимать как защитное уравнивание потенциалов.

1.7.33. Выравнивание потенциалов — снижение разности потенциалов (шагового напряжения) на поверхности земли или пола при помощи защитных проводников, проложенных в земле, в полу или на их поверхности и присоединенных к заземляющему устройству, или путем применения специальных покрытий земли.

1.7.34. Защитный (РЕ) проводник — проводник, предназначенный для целей электробезопасности.

Защитный заземляющий проводник- защитный проводник, предназначенный для защитного заземления.

Защитный проводник уравнивания потенциалов — защитный проводник, предназначенный для защитного уравнивания потенциалов.

Нулевой защитный проводник — защитный проводник в электроустановках до 1 кВ, предназначенный для присоединения открытых проводящих частей к глухозаземленной нейтрали источника питания.

1.7.35. Нулевой рабочий (нейтральный) проводник (N) — проводник в электроустановках до 1 кВ, предназначенный для питания электроприемников и соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в сетях постоянного тока.

1.7.36. Совмещенные нулевой защитный и нулевой рабочий (PEN) проводники — проводники в электроустановках напряжением до 1 кВ, совмещающие функции нулевого защитного и нулевого рабочего проводников.

1.7.37. Главная заземляющая шина — шина, являющаяся частью заземляющего устройства электроустановки до 1 кВ и предназначенная для присоединения нескольких проводников с целью заземления и уравнивания потенциалов.

1.7.38. Защитное автоматическое отключение питания — автоматическое размыкание цепи одного или нескольких фазных проводников (и, если требуется, нулевого рабочего проводника), выполняемое в целях электробезопасности.

Термин автоматическое отключение питания, используемый в главе, следует понимать как защитное автоматическое отключение питания.

1.7.39. Основная изоляция — изоляция токоведущих частей, обеспечивающая в том числе защиту от прямого прикосновения.

Смотрите так же:  Провода высоковольтные vw bora

1.7.40. Дополнительная изоляция — независимая изоляция в электроустановках напряжением до 1 кВ, выполняемая дополнительно к основной изоляции для защиты при косвенном прикосновении.

1.7.41. Двойная изоляция — изоляция в электроустановках напряжением до 1 кВ, состоящая из основной и дополнительной изоляций.

1.7.42. Усиленная изоляция — изоляция в электроустановках напряжением до 1 кВ, обеспечивающая степень защиты от поражения электрическим током, равноценную двойной изоляции.

1.7.43. Сверхнизкое (малое) напряжение (СНН) — напряжение, не превышающее 50 В переменного и 120 В постоянного тока.

1.7.44. Разделительный трансформатор — трансформатор, первичная обмотка которого отделена от вторичных обмоток при помощи защитного электрического разделения цепей.

1.7.45. Безопасный разделительный трансформатор — разделительный трансформатор, предназначенный для питания цепей сверхнизким напряжением.

1.7.46. Защитный экран — проводящий экран, предназначенный для отделения электрической цепи и/или проводников от токоведущих частей других цепей.

1.7.47. Защитное электрическое разделение цепей — отделение одной электрической цепи от других цепей в электроустановках напряжением до 1 кВ с помощью:

основной изоляции и защитного экрана;

1.7.48. Непроводящие (изолирующие) помещения, зоны, площадки — помещения, зоны, площадки, в которых (на которых) защита при косвенном прикосновении обеспечивается высоким сопротивлением пола и стен и в которых отсутствуют заземленные проводящие части.

Научный форум dxdy

Элементарный вопрос: электросхемы

08/01/09

1098
Санкт — Петербург

Нет есть в машинах, тракторах и т.п.

У Вас в схеме «+» и «-» подключены к одной клемме.

Последний раз редактировалось Munin 28.02.2013, 19:17, всего редактировалось 1 раз.

Последний раз редактировалось hvost_soroki 01.03.2013, 00:40, всего редактировалось 3 раз(а).

Дело в том, что в реальных осциллографах входы имеют рабочий ноль, соединённый с корпусом прибора. Этот ноль должен быть соединён с заземлённым проводником схемы, чтобы исключить попадание на корпус опасного высокого (по отношению к земле) напряжения.

Freeman-des в сообщении #689162 писал(а):
У меня очень плохо с электроцепями.

У Вас в схеме «+» и «-» подключены к одной клемме.

BISHA , у Вас очень плохо с электроцепями.

Это штекерный разъём, в котором «-» подсоединён к корпусу прибора.

Обслуживание вторичных цепей постоянного и переменного тока

Виды и назначение вторичных цепей

Вторичные цепи постоянного и переменного тока напряжением до 1000 В служат для питания и соединения между собой аппаратов и приборов управления, защиты, сигнализации, блокировки, измерения. Различают следующие основные виды вторичных цепей:

токовые цепи и цепи напряжения, в которых устанавливаются измерительные приборы, измеряющие электрические параметры (ток, напряжение, мощность и др.), а также реле и другие аппараты;

оперативные цепи, служащие для подачи постоянного или переменного оперативного тока к исполнительным органам. К ним относятся установленные во вторичных цепях переключающие и коммутирующие устройства (электромагниты, контакторы, автоматические выключатели, рубильники, переключатели, предохранители, испытательные блоки, ключи и кнопки и т. д.).

Токовые цепи, идущие от измерительных ТТ, используются в основном для питания:

измерительных приборов (показывающих и регистрирующих): амперметров, ваттметров и варметров, счетчиков активной и реактивной энергии, телеизмерительных устройств, осциллографов и др.;

релейной защиты: токовых органов максимальной, дифференциальной, дистанционной, защиты от замыкания на землю, устройств резервирования отказа выключателей (УРОВ) и др.;

автоматических устройств АПВ, АРВ синхронных компенсаторов, приборов регулирования перетоков мощности, противоаварийной автоматики и т.д.;

некоторых устройств блокировки, сигнализации и др.

Кроме того, токовые цепи используются для питания устройств преобразования переменного тока в постоянный, применяемых в качестве источников оперативного тока.

При построении токовых цепей следует выполнять определенные правила.

Все устройства токовых цепей в зависимости от их количества, протяженности, потребляемой ими мощности и требуемой точности могут подключаться к одному или нескольким источникам тока.

В многообмоточных трансформаторах тока каждая вторичная обмотка рассматривается как независимый источник тока.

Вторичные устройства, присоединяемые к ТТ одной фазы, подключаются к его вторичной обмотке последовательно и должны составлять с соединительными цепями замкнутый контур. Размыкание цепи вторичной обмотки ТТ при наличии тока в его первичной цепи недопустимо, в связи с этим во вторичных токовых цепях нельзя ставить автоматические выключатели, рубильники и предохранители.

Для защиты персонала в случае повреждений ТТ (при перекрытии изоляции между первичной и вторичной обмотками) должно предусматриваться защитное заземление во вторичных цепях ТТ в одной точке: на ближайшей от ТТ сборке зажимов или на зажимах ТТ.

Для защит, объединяющих несколько комплектов ТТ, заземление цепей производится также в одной точке; в этом случае допускается заземление через предохранитель-разрядник с пробивным напряжением не выше 1000 В и шунтирующий резистор 100 Ом для снятия статического заряда.

На рис. 1 показано подключение токовых цепей к измерительным приборам и устройствам защиты и автоматики и их распределение по ТТ для схемы с тремя выключателями на два присоединения. Учитывается особенность первичной схемы, которая состоит в возможности питания каждой из двух линий от обеих систем шин. Поэтому вторичные токи от ТТ (например, ТТ5, ТТ6 и т. д.), подводимые к реле и приборам одного первичного присоединения, суммируются (за исключением дифференциальной защиты шин и УРОВ).

Необходимо иметь в виду, что упрощенно показанные на рисунках устройства защиты, ОАПВ и т. д. состоят в действительности из нескольких реле и аппаратов, связанных между собою электрическими цепями. Например, на линии, показанной на рис. 2, где перетоки мощности могут менять свое направление, подключены два счетчика со стопорами для измерения активной энергии, один из которых Wh1 учитывает передаваемую энергию только в одном направлении, а другой Wh2 — в обратном. Затем вторичные токовые цепи проходят через три амперметра, токовые обмотки ваттметpa W и варметра Var, приборы противоаварийной автоматики 1, осциллограф и аппаратуру телеизмерения 2.

В нулевой провод включается фиксирующий амперметр ФА, с помощью которого определяется место повреждения на линии. На рис.3 показаны токовые цепи дифференциальной защиты шин. От ТТ линий Л1, ЛЗ и Л5, отходящие от I системы шин, или Л2, Л4 и Л6, отходящих от II системы шин (системы шин на рисунке не показаны) и от автотрансформатора T1 (или Т2), вторичные токовые цепи проходят через свои испытательные блоки, после чего суммарный ток всех присоединений I или II систем шин (при нормальном режиме сумма вторичных токов равна нулю) через испытательный блок БИ1 поступает в комплект реле дифференциальной защиты.

В случае, когда какие-либо присоединения не находятся в работе (в ремонте и т.д.), с соответствующих испытательных блоков снимаются рабочие крышки, в результате чего вторичные цепи ТТ замыкаются накоротко и заземляются, а цепи, идущие к реле защиты, разрываются.

Рис. 1. Схема распределения защит, автоматики и измерительных приборов по сердечникам ТТ для двух линий 330 или 500 кВ на подстанции с «полуторной» схемой соединений: 1—устройство резервирования отказа выключателей и противоаварийной автоматики линий; 2 — дифференциальная защита шин; 3 — счетчики; 4 — измерительные приборы (амперметры, ваттметры, варметры); 5 — противоаварийная автоматика; 6 — телеизмерение; 7 — резервные защиты и противоаварийная автоматика; 8 — основная защита ВЛ; 9 —однофазное АПВ (ОАПВ)

Что касается испытательного блока ВИ1, то в случае вывода из работы дифференциальной защиты шин — при снятии рабочей крышки— замыкаются все токовые цепи, подключенные к данной системе шин, и одновременно от защиты отсоединяются цепи оперативного постоянного тока (на схеме последние не показаны).

Рис. 2. Схема токовых цепей для линии 330 500 кВ, питаемой от двух систем шин: 1 — осциллограф; 2 — аппаратура телеизмерения

Рис. 3. Схема токовых цепей дифференциальной защиты шин 330 или 500 кВ

В схеме дифференциальной защиты предусмотрен миллиамперметр mA, включенный в нулевой провод ТТ, с помощью которого при нажатии кнопки К оперативный персонал периодически проверяет ток небаланса защиты, что очень важно для предупреждения ее ложного срабатывания.

Рис. 4. Организация вторичных цепей напряжения в ОРУ 330 или 500 кВ, выполненных по полуторной схеме: 1 — к защите, измерительным приборам и другим устройствам автотрансформатора; 2 — к защите, измерительным приборам и другим устройствам линии Л2; 3 — к защите, измерительным приборам и другим устройствам II системы шин; 4 — к РУ 110 или 220 кВ; 5 — к резервному трансформатору с. н. 6 или 10 кВ; ПР1, ПР2 — переключатели цепей напряжения; 6 — шинки напряжения II системы шин

Цепи напряжения, идущие от измерительных трансформаторов напряжения (ТН), используются в основном для питания:

измерительных приборов (указывающих и регистрирующих) — вольтметров, частотомеров, ваттметров, варметров,

счетчиков активной и реактивной энергии, осциллографов, телеизмерительных устройств и др.

релейной защиты — дистанционной, направленной, от повышения или понижения напряжения и др.;

автоматических устройств — АПВ, АВР, АРВ, противоаварийной автоматики, автоматической частотной разгрузки (АЧР), приборов регулирования частоты, перетоков мощности, блокировочных устройств и др.;

органов контроля наличия напряжения. Кроме того, они используются для питания выпрямительных устройств, применяемых в качестве источников постоянного оперативного тока.

Чтобы получить представление о том, как формируются вторичные цепи напряжения, обратимся к рис. 4. На рисунке показаны две цепи полуторной схемы электрических соединений РУ 500 кВ: к одной присоединены два автотрансформатора Т связи с РУ 500 кВ, к другой — две воздушные линии Л1 и Л2 500 кВ. Из рисунка видно, что в полуторной схеме ТН установлены на всех присоединениях — на линиях и автотрансформаторах и на обеих системах шин. У каждого из ТН имеются две вторичные обмотки — основная и дополнительная. Они имеют разные схемы соединений.

Основные обмотки соединяются звездой и используются для питания цепей защиты и измерений. Дополнительные обмотки соединены по схеме разомкнутого треугольника. Они используются в основном для питания цепей защиты от замыкания на землю (благодаря наличию па выводах обмотки напряжения нулевой последовательности 3U0).

Цепи от вторичных обмоток ТН выводятся также на сборные шинки напряжения, к которым подключаются цепи обмоток ТН, а также цепи напряжения различных вторичных устройств.

Наиболее разветвленные шинки и вторичные цепи напряжения создаются у ТН сборных шин 500 кВ. От этих шинок 6 подается с помощью переключателей ПР1 и ПР2 резервное питание цепей защиты (при выходе из строя линейного ТН), измерительных приборов и расчетных счетчиков, установленных на этих линиях (в последнем случае с помощью реле фиксации РФ).

Питание расчетных счетчиков на линиях для соблюдения точности их показаний осуществляется своими контрольными кабелями, специально рассчитанными для этой цели. К выводам н и bи вторичной обмотки разомкнутого треугольника подключено устройство РКН для контроля целости цепи нулевой последовательности 3U0. В нормальных условиях персонал, пользуясь кнопкой К, периодически проверяет по миллиамперметру тА наличие напряжения небаланса и исправность обмотки разомкнутого треугольника ТН и его цепей.

Контроль напряжения в цепях основных обмоток осуществляется также при помощи реле РКН (на рис. 4 оно подключено к цепям а и с ТН5). Выполнение цепей напряжения имеет некоторые общие правила. Например, ТН должны защищаться от всех видов КЗ во вторичных цепях автоматическими выключателями, имеющими вспомогательные контакты для сигнализации неисправности. Если вторичные цепи разветвлены незначительно и вероятность повреждений в них мала, автоматические выключатели допускается не устанавливать, например, в цепи 3U0 на ТН шин РУ с. н. 6—10 кВ и ГРУ 6—10 кВ.

Смотрите так же:  Простой преобразователь с 12 на 220 вольт

В сетях с большим током замыкания на землю во вторичных цепях обмоток ТН, соединенных в разомкнутый треугольник, автоматические выключатели также не предусматриваются. При возникновении повреждений в таких сетях поврежденные участки быстро отключаются соответствующими защитами сети и соответственно быстро снижается напряжение 3U0. Поэтому в цепях, идущих, например, от выводов н и bн ТН линии и шин 500 кВ, автоматических выключателей нет. В сетях с малым током замыкания на землю у ТН между выводами н и bп может длительно существовать 3U0 при КЗ во вторичных цепях ТН может повредиться. Поэтому здесь необходимо устанавливать автоматические выключатели.

Для защиты цепей напряжения, прокладываемых от неразомкнутых вершин треугольника (и, ф), предусматриваются отдельные автоматические выключатели. Кроме того, во всех вторичных цепях ТН предусматривается установка рубильников для создания в них видимого разрыва, что необходимо для обеспечения безопасного ведения ремонтных работ на ТН (исключается подача напряжения на вторичные обмотки ТН от постороннего источника). В комплектном распределительном устройстве в схеме ТН на шинах РУ с. н. 6—10 кВ разъединители не устанавливаются, так как видимый разрыв обеспечивается при выкатывании тележки с ТН из шкафа КРУ.

Вторичные обмотки и вторичные цепи ТН должны иметь защитное заземление. Оно выполняется путем соединения с заземляющим устройством одного из фазных проводов или нулевой точки вторичных обмоток. Заземление вторичных обмоток ТН выполняется на ближайшей от ТН сборке зажимов или у выводов самого ТН.

В проводах заземленной фазы между вторичной обмоткой ТН и местом заземления рубильника, переключатели, автоматические выключатели и другие аппараты не устанавливаются. Заземленные выводы обмоток ТН не объединяются, а присоединенные к ним жилы контрольного кабеля прокладываются до места своего назначения, например до своих шинок. Не объединяются заземленные выводы разных ТН.

В эксплуатации возможны случаи повреждения или вывода в ремонт ТН, вторичные цепи которых подключены к устройствам защиты, измерения, автоматики, учета и др. Чтобы не допустить нарушения их работы, применяется резервирование.

Рис. 5. Схема ручного переключения вторичных цепей ТН в ОРУ, выполненном по полуторной схеме: 1 — питание шинок напряжения от ТН линии (например, Л1); 2 — к реле контроля напряжения; 3 — цепи защиты, АПВ и противоаварийной автоматики; 4 — аппаратура телеизмерения; 5 — осциллограф; 6 — к шинкам напряжения I системы шин; 7 — к шинкам напряжения II системы шин

В полуторной схеме (рис. 5) в случае вывода ТН линий резервирование осуществляется от ТН, установленных на шинах, с помощью переключателя ПР1 для цепей, идущих от основной обмотки, соединенной в звезду, и переключателя ПР2 для цепей разомкнутого треугольника. С помощью переключателей ПР1 и ПР2 вторичные шинки напряжения линии подключаются к своему ТН (рабочая схема) или к ТН первой или второй систем шин (резервная схема). В последнем случае это переключение осуществляется переключателями ПРЗ и ПР4.

Способ резервирования питания цепей напряжения одной линии, например Л1 на рис. 4 (при выводе ее ТН в ремонт), от другой линии, например Л2, не следует применять, так как при КЗ и отключении линии Л2 цепи напряжения защиты линии Л1 лишаются питания.

Рис. 6. Схема ручного переключения вторичных цепей ТН в распредустройстве с двумя системами шин: 1 — к измерительным приборам и другим устройствам I системы шин на ГЩУ; 2 —к измерительным приборам и другим устройствам II системы шин на ГЩУ

В схемах с двойной системой сборных шин трансформаторы напряжения должны взаимно друг друга резервировать (при выводе из работы одного из ТН) с помощью переключателей ПР1—ПР4 (рис. 6). Для этого при переключении шиносоединительный выключатель ШСВ должен быть включен. В схемах с двумя системами сборных шин при переключении присоединений с одной системы шин на другую предусматривается соответствующее автоматическое переключение цепей напряжения.

Рис. 7. Схема автоматического переключения с помощью вспомогательных контактов разъединителей вторичных цепей шинных ТН в ЗРУ 6—10 кВ

В ЗРУ 6—10 кВ переключения производятся вспомогательными контактами шинных разъединителей (рис. 7). Например, при включенном разъединителе Р2 линии Л1 цепи напряжения через вспомогательные контакты этого разъединителя подключены с одной стороны к шинкам напряжения II системы шин, а с другой стороны — к защите и приборам этой линии.

При переводе линии Л1 на I систему шин включается разъединитель Р1, а разъединитель Р2 отключается. Цепи напряжения линии Л1 переводятся с помощью вспомогательных контактов на питание от THI системы шин. Таким образом, не прерывается питание цепей напряжения при переключении линии Л1 с одной системы шин на другую. Тот же принцип соблюдается при оперативных переключениях линии Л2 и других присоединений.

На линиях 35 кВ и выше, подключенных к двойной системе сборных шин, переключение цепей напряжения производится с помощью контактов реле-повторителей положения шинных разъединителей. При переводе первичных присоединений на другую систему сборных шин переключаются все цепи напряжения, в том числе и заземленные цепи основных и дополнительных обмоток.

При этом исключается возможность объединения заземленных цепей двух ТН. Это обстоятельство является важным. Как показал опыт эксплуатации, объединение заземленных точек разных ТН может привести к нарушению нормальной работы релейной защиты и устройств автоматики и поэтому недопустимо.

Рис. 8. Цепи напряжения шкафа ТН КРУ 6 кВ: 1 — цепи напряжения, защиты и других устройств резервного трансформатора с. н. 6 кВ; 2 — цепь сигнала «Отключение автоматического выключателя ТН»; 3 — шкаф трансформатора напряжения КРУ

На рис. 8 показаны цепи напряжения в шкафу ТН КРУ 6 кВ с. н. Здесь обмотки двух однофазных ТН соединены в открытый треугольник. Трансформатор напряжения со стороны высшего напряжения подключается только через разъемные контакты, а со стороны низшего через разъемные контакты и автоматический выключатель, от вспомогательных контактов которого предусматривается передача на щит управления сигнала об отключении автоматического выключателя АВ.

В эксплуатации очень важно осуществлять тщательный контроль за надежным состоянием разъемных контактов в шкафах КРУ и КРУН и отходящих от них вторичных цепей напряжения, оперативного тока и т. д.

Цепи оперативного тока. Широкое распространение в электроустановках получил оперативный ток.

Выполнение цепей оперативного тока также должно предусматривать их защиту от токов КЗ. Для этого питание оперативным током вторичных цепей каждого присоединения производится через отдельные предохранители или автоматические выключатели с вспомогательными контактами для сигнализации их отключения. Применение автоматических выключателей предпочтительнее, чем применение предохранителей.

Питание оперативным током цепей релейной защиты и управления выключателями выполняется, как правило и через отдельные автоматические выключатели (раздельно от цепей сигнализации и блокировки).

Для ответственных присоединений (линии электропередачи, ТН 220 кВ и выше и СК) отдельные автоматические выключатели устанавливаются также для основных и резервных защит.

Цепи оперативного постоянного тока должны иметь устройства контроля изоляции, обеспечивающие подачу предупреждающего сигнала при снижении сопротивления изоляции ниже установленного значения. Для цепей постоянного тока предусматриваются измерения сопротивления изоляции на каждом полюсе.

Для надежной работы энергообъектов и их защиты необходимо контролировать наличие питания цепей оперативного тока каждого присоединения. Предпочтительнее осуществлять контроль с помощью реле, которые позволяют подать предупреждающий сигнал при исчезновении напряжения оперативного тока.

Способ измерения сопротивления изоляции в цепях постоянного тока

Владельцы патента RU 2384855:

Изобретение относится к электроизмерительной технике, в частности к измерению изоляции цепей постоянного тока. К полюсам цепи постоянного тока подключают два резистора. Другие два резистора подключают параллельно нагрузке. В место соединения резисторов между собой подключают измерительную цепь, состоящую из последовательно включенных источника измерительного напряжения и измерителя тока. Источник напряжения подключают в поочередно изменяемой полярности полюсов. Определяют эквивалентный измерительный ток как половину суммы двух абсолютных по величине значений токов, измеренных последовательно по времени при разной полярности источника напряжения. Определяют сопротивление изоляции по формуле R=Е/Iэкв — 0,5r, где Е — напряжение источника, Iэкв — эквивалентный ток, r — сопротивление резисторов. Технический результат заключается в исключении погрешности измерения от тока небаланса в цепи резисторов. 5 з.п. ф-лы, 3 ил.

Использование: для измерения сопротивления изоляции в цепях постоянного тока, в элементах нагрузки цепей постоянного тока, в сетях двойного рода тока, для определения места износа изоляции, улучшения контрольно-измерительных и защитных функций системы автоматики.

Сущность изобретения: способ измерения сопротивления изоляции в цепях постоянного тока основан на: подключении к полюсам цепи постоянного тока цепи резисторов, состоящей из двух последовательно соединенных резисторов, имеющих одинаковую величину сопротивления, включении в место соединения резисторов между собой первого конца измерительной цепи, состоящей из последовательно включенных источника измерительного напряжения и измерителя тока, подключении второго конца измерительной цепи к элементу заземления, определении измерительного тока в измерительной цепи, включении источника измерительного напряжения то в одной полярности полюсов, то в противоположной полярности полюсов, определении эквивалентного измерительного тока как половины суммы двух абсолютных по величине значений измерительного тока, измеренных последовательно по времени, определении эквивалентного сопротивления цепи двух резисторов, делении величины напряжения измерительного источника на величину эквивалентного измерительного тока и вычитании от значения, полученного в результате этого деления, значения величины эквивалентного сопротивления цепи резисторов.

Изобретение относится к электротехнике и может быть использовано в сетях постоянного тока, имеющих элементы, требующие контроля изоляции и защиты от замыкания на землю, например в системах возбуждения электрических машин. При этом решены задачи: точности измерений, быстродействия, простоты алгоритма и удобства его применения. При реализации способа дополнительно решены задачи: определения места повреждения изоляции, контроля контактных соединений системы измерений и повышения надежности контактных соединений.

Известен способ трех отсчетов вольтметра [1] для измерения сопротивления изоляции в цепях постоянного тока под напряжением, включающий измерение между полюсами электрической цепи, поочередное шунтирование резистором полюсов цепи на землю, измерение установившихся значений напряжений на шунтирующем резисторе, вычисление эквивалентного сопротивления изоляции как произведения величины шунтирующего резистора на отношение напряжения измеряемой цепи к сумме установившихся напряжений на шунтирующем резисторе, уменьшенного на единицу.

Недостатками этого способа являются: необходимость наличия напряжения между полюсами электрической цепи и долгая процедура трех последовательных измерений. Поэтому этот способ: лишен возможности измерения сопротивления изоляции при отсутствии напряжения между полюсами, не обеспечивает точности измерения в динамических режимах, требует для реализации способа инерционных измерительных приборов, демпфирующих колебания напряжения в нестационарных режимах, не обеспечивает необходимого быстродействия для срабатывания защиты от замыкания на землю.

Наиболее близким по технической сущности к предлагаемому способу является способ измерения сопротивления изоляции по «методу уравновешенного моста» [2], включающий подключение к полюсам цепи двух резисторов, соединенных последовательно, определение отсутствия тока небаланса в цепи двух последовательно включенных резисторов, включение в место соединения двух резисторов между собой источника измерительного напряжения и измерителя тока, соединенных последовательно и подключенных с другой стороны этой цепи к элементу заземления, измерение тока в цепи источника измерительного напряжения при отсутствии тока небаланса в цепи последовательно включенных резисторов, определение эквивалентного сопротивления изоляции по следующей формуле:

Смотрите так же:  Сечение сип провода

где R — эквивалентное сопротивление изоляции сети;

Е — напряжение измерительного источника;

Iизм — ток в цепи источника измерительного напряжения;

Rд — ограничительное сопротивление;

r1, r2 — два резистора, подключенных к полюсам цепи.

В известном способе [2], выбранном за прототип, удается осуществить измерение сопротивления изоляции при отсутствии напряжения между полюсами подключением к полюсам двух резисторов 7 и 8 и включением в место соединения двух резисторов между собой переключателя 6, источника измерительного напряжения 5 и измерителя тока 3 (см. Фиг.1).

Недостаток способа-прототипа заключается в том, что для точного измерения изоляции необходимо отсутствие тока небаланса в цепи последовательно включенных резисторов. Ток небаланса возникает при несимметричном нарушении изоляции внутри какого-нибудь элемента цепи постоянного тока относительно полюсов.

Так, при несимметричном нарушении изоляции внутри элемента цепи постоянного тока 9, имеющего сопротивление Rн (см. Фиг.1) и включенного между полюсами, появляется ток небаланса в цепи последовательно включенных резисторов 7 и 8, который искажает величину измеряемого сопротивления изоляции. При этом формула для измерения тока в цепи источника измерительного напряжения 5 будет иметь следующий вид:

где U — напряжение между полюсами цепи постоянного тока;

Uнб=U(R1r2-R2r1)/[(r1+r2)(R1+R2)] — напряжение небаланса в цепи последовательно включенных резисторов 7 и 8;

R1, R2 — сопротивления изоляции 1 и 2 между полюсами и землей.

Сущность изобретения заключается в том, что, как в способе-прототипе, способ измерения сопротивления изоляции, включающий подключение к полюсам цепи двух резисторов 7 и 8, соединенных последовательно, включение в место соединения двух резисторов между собой источника измерительного напряжения 5 и измерителя тока 3, соединенных последовательно и подключенных с другой стороны этой цепи к элементу заземления 10, измерение тока в цепи источника измерительного напряжения 5, но в отличие от прототипа подключают к полюсам цепи два одинаковых резистора 7 и 8, включают источник измерительного напряжения 5 то в одной полярности полюсов, то в противоположной полярности полюсов (см. Фиг.2), измеряют соответственно этим положениям источника два значения тока I1 и I2 и определяют сопротивление изоляции по следующей формуле:

Rэкв=r1r2/(r1+r2)=r/2 — эквивалентное сопротивление цепи резисторов 7 и 8, r=r1=r2.

Предлагаемый способ позволяет исключить учет тока небаланса в цепи последовательно включенных между полюсами резисторов и этим обеспечивает:

— автоматизацию измерения изоляции исключением процедуры предварительной настройки тока небаланса до нуля;

— повышение точности измерений сопротивления изоляции во всех аварийных ситуациях;

— ускорение процесса измерения изоляции;

— расширение функциональных возможностей реализации данного способа.

При исследовании патентной и другой научно-технической информации заявителем не были обнаружены источники, в которых были бы приведены сведения о технических решениях, содержащих совокупность отличительных признаков предлагаемого способа, хотя и известны технические решения, содержащие отдельные признаки заявляемого объекта, однако свойства и эффект, которые указанные признаки сообщают этим объектам, иные, чем в предлагаемом решении, поэтому указанные отличия являются существенными.

Способ измерения изоляции в цепях постоянного тока реализуется в устройстве (см. Фиг.2), содержащем: 1 — сопротивление изоляции между +полюсом и землей, 2 — сопротивление изоляции между -полюсом и землей, 3 — датчик тока в измерительной цепи I1, I2, 5 — источник измерительного напряжения, 7, 8 — последовательно включенные резисторы, 11 — предохранитель, 12…15 — оптопары для переключения полярности источника измерительного напряжения, 16 — стабилитроны, 17 — нагрузочный резистор (с сопротивлением r3), 18 — контроллер (для вычисления сопротивления изоляции и управления переключением полюсов источника измерительного напряжения) с модулем аналогового ввода, 19 — кнопка сброса, 20 — блок питания, 21 — сигнальные реле, 22 — разъединительные клеммы, 23 — выключатель автоматический.

С целью компенсации внутреннего сопротивления измерительной цепи и повышения точности измерения при малых измерительных токах, в место соединения двух резисторов между собой дополнительно подключают нагрузочный резистор 17 (см. Фиг.2). Ток нагрузочного резистора I3 не повлияет на определение эквивалентного измерительного тока, поэтому его можно не учитывать:

где I3 — ток нагрузочного резистора 17.

С целью определения направления смещения места несимметричного нарушения изоляции нагрузки относительно положения средины сопротивления нагрузки, устанавливают, что величина напряжения в цепи постоянного тока не равна нулю. Определяют ток небаланса как разницу двух абсолютных по величине значений измерительного тока, измеренных последовательно по времени:

R1 — величина сопротивления изоляции между +полюсом и землей;

R2 — величина сопротивления изоляции между -полюсом и землей.

Определяют, что смещение места несимметричного нарушения изоляции нагрузки относительно положения средины сопротивления нагрузки произошло в сторону положительного полюса, если ток небаланса отрицательный. Определяют, что смещение места несимметричного нарушения изоляции нагрузки относительно положения средины сопротивления нагрузки произошло в сторону отрицательного полюса, если ток небаланса положительный.

Если выполняется условие Iнб 0 (или Iнб>Iуст), т.е. R1>R2, то идет сигнал «Замыкание отрицательного полюса». Если U=0, то Iнб=0 и сигнала не будет.

С целью определения отношения величины смещения места несимметричного нарушения изоляции нагрузки относительно положения средины сопротивления нагрузки, устанавливают, что величины напряжения в цепи постоянного тока и эквивалентного измерительного тока не равны нулю, делят величину тока небаланса на величину эквивалентного измерительного тока и на величину напряжения в цепи постоянного тока, умножают на величину напряжения измерительного источника:

(R1-R2)/(R1+R2)=(Iнб/Iэкв)(Е/U) — отношение величины смещения места несимметричного нарушения изоляции нагрузки относительно положения средины сопротивления нагрузки.

С целью контроля контактов (или щеток), соединяющих измерительную цепь и цепь резисторов 7 и 8 с цепями постоянного тока, цепями нагрузки 9 и цепями заземления 10, дополнительно вводится цепь контроля, состоящая из источника контрольного сигнала 29 и элемента сигнализации 26 и подключающаяся своими концами к контактам 27 и 28 (см. Фиг.3).

С целью увеличения контактных усилий в контактах 27 и 28, соединяющих измерительную цепь и цепь резисторов 7 и 8 с цепями постоянного тока, цепями нагрузки 9 и цепями заземления 10, возникающих при разрыве контакта 27 или 28, в цепь контроля дополнительно вводится элемент накопления электромагнитной энергии (см. Фиг.3).

1. Иванов Е.А., Кудрявцев В.П. и др. Оценка погрешностей измерения сопротивления изоляции судовых сетей постоянного тока. М.: Судостроение, 1974, №7, с.37-38.

2. Новости электротехники. №4(52), 2008. «Как правильно измерить сопротивление изоляции электроустановок». (пп. «Метод уравновешенного моста».)// Е.Иванов, А.Дьячков.

1. Способ измерения сопротивления изоляции в цепях постоянного тока, основанный на подключении к полюсам цепи постоянного тока цепи резисторов, состоящей из двух последовательно соединенных резисторов, включении в место соединения резисторов между собой первого конца измерительной цепи, состоящей из последовательно включенных источника измерительного напряжения и измерителя тока, подключении второго конца измерительной цепи к элементу заземления, определении измерительного тока в измерительной цепи, отличающийся тем, что, с целью исключения погрешности измерения от тока небаланса в цепи резисторов, подключают к полюсам цепи постоянного тока два резистора, имеющих одинаковую величину сопротивления, включают источник измерительного напряжения то в одной полярности, то в противоположной полярности полюсов, определяют абсолютные по величине значения измерительного тока, определяют эквивалентный измерительный ток, как половину суммы двух абсолютных по величине значений измерительного тока, измеренных последовательно по времени при разной полярности источника измерительного напряжения, определяют эквивалентное сопротивление цепи равных по величине резисторов, как половину величины одного резистора, делят величину напряжения измерительного источника на величину эквивалентного измерительного тока и вычитают от значения, полученного в результате этого деления, значение величины эквивалентного сопротивления цепи резисторов.

2. Способ по п.1, отличающийся тем, что, с целью компенсации внутреннего сопротивления измерительной цепи и повышения точности измерения при малых измерительных токах, в место соединения двух резисторов между собой дополнительно подключают нагрузочный резистор.

3. Способ по п.1, отличающийся тем, что, с целью определения направления смещения места несимметричного нарушения изоляции нагрузки относительно положения средины сопротивления нагрузки при напряжении в цепи постоянного тока не равном нулю, определяют ток небаланса, как разницу двух абсолютных по величине значений измерительного тока, измеренных последовательно по времени при разной полярности источника измерительного напряжения, определяют, что смещение места несимметричного нарушения изоляции нагрузки относительно положения средины сопротивления нагрузки произошло в сторону отрицательного полюса, если ток небаланса положительный.

4. Способ по п.1, отличающийся тем, что, с целью определения отношения величины смещения места несимметричного нарушения изоляции нагрузки относительно положения середины сопротивления нагрузки при напряжении в цепи постоянного тока не равном нулю, определяют ток небаланса, как разницу двух абсолютных по величине значений измерительного тока, измеренных последовательно по времени при разной полярности источника измерительного напряжения, делят величину тока небаланса на величину эквивалентного измерительного тока и на величину напряжения в цепи постоянного тока, умножают на величину напряжения измерительного источника.

5. Способ по п.1, отличающийся тем, что дополнительно вводится цепь контроля щеточного контакта, соединяющего измерительную цепь и цепь заземления с вращающимся валом, на котором расположены цепи постоянного тока, состоящая из последовательно включенных источника контрольного сигнала, элемента сигнализации и второго щеточного контакта, подключающаяся одним концом к месту щеточного контакта, соединяющего измерительную цепь и цепь заземления с вращающимся валом, а вторым концом и щеточным контактом — к этому вращающемуся валу.

6. Способ по п.1, отличающийся тем, что дополнительно вводится цепь увеличения контактных усилий, возникающих при разрыве щеточного контакта, соединяющего измерительную цепь и цепь заземления с вращающимся валом, на котором расположены цепи постоянного тока, состоящая из последовательно включенных источника контрольного сигнала, элемента накопления электромагнитной энергии и второго щеточного контакта, подключающаяся одним концом к месту щеточного контакта, соединяющего измерительную цепь и цепь заземления с вращающимся валом, а вторым концом и щеточным контактом — к этому вращающемуся валу.

Похожие статьи:

  • Пуэ время срабатывания узо Пуэ время срабатывания узо согласно ПУЭ 7 (РФ) выбор автомата производится согласно пунктов: -------------------------------------------------------------------------------------------------------------------------------------------- […]
  • Высоковольтные провода тесла для лачетти Chevrolet Lacetti 5D Красная Стрела › Бортжурнал › Высоковольтные провода Тесла на проверку Го@но Нетак давно позванивал провод высоковольтные, самый длинный показал сопротивление примерно 3 кОма. Подумывал делать провода с нулевым […]
  • Электропроводка паз 32054 Комплект электропроводки ПАЗ-32054 (дизель) Адрес склада: ул. 2-я Володарского, д. 76/23А, г. Ростов-на-Дону. Работаем с понедельника по пятницу с 09:00 до 17:00 без перерывов. Стоимость доставки: согласно тарифам Почты России Стоимость […]
  • Линия для производства провода Линия для производства провода Линия для производства проводов с пластмассовой изоляцией . инд.591.465 Линия состоит из: · Пресс червячный ЧП 32х25 · Ванна охлаждения I · Ванна охлаждения II (2 штуки) · Компенсатор (2 штуки) Диаметр […]
  • Реле переменного тока 220 в Реле МК2Р (АС 220 В) Реле МК2Р (АС 220 В) предназначено для защиты от перегрузок сети и коротких замыканий в жилых и промышленных помещениях. Область применения Реле переменного тока широко используется для контроля работы двигателя, […]
  • Определение единицы измерения тока В помощь изучающему электронику Формулы, вычисления, . - Единицы измерения - Данный справочник собран из разных источников. Но на его создание подтолкнула небольшая книжка "Массовой радиобиблиотеки" изданная в 1964 году, как перевод книги […]